User menu

News

20 May 2016

SEE/MAPLD and Space Tech Expo logos

STAR-Dundee exhibited at two events in California in the week beginning 23rd of May.  From the 24th until the 25th we were at the 25th Annual Single Event Effects (SEE) Symposium coupled with the Military and Aerospace Programmable Logic Devices (MAPLD) Workshop in La Jolla, San Diego.  In parallel, from the 24th to the 26th we were also in Pasadena at Space Tech Expo 2016.

At both events we had some of our SpaceWire and SpaceFibre products on display, including a demonstration of the SpaceFibre protocol running on the Microsemi RTG4 FPGA connected to our FMC SpaceWire/SpaceFibre Board.  We also demonstrated our new SpaceFibre Routers at SEE/MAPLD on the 24th and at Space Tech Expo on the 25th and 26th.  This demonstration highlights the features of SpaceFibre which make it ideal for many space applications:

  • High data rates – 2.5 Gbits/s links, plus multi-laning support.
  • SpaceWire compatibility – STAR Fire units are used to interconnect SpaceWire and SpaceFibre.
  • Low cable mass – Both flight and lab cables are used in the demonstration.
  • Quality of service – Multiple traffic streams are multiplexed over a single SpaceFibre link, with each stream assigned a percentage of the bandwidth.
  • Fault Detection, Isolation and Recovery – Cables can be removed and the retry mechanism ensures the destination encounters no errors.
 

13 May 2016

Demonstration of multi-laning at DASIA 2016

STAR-Dundee has demonstrated the advanced multi-laning capabilities of the SpaceFibre protocol. This allows several lanes to operate in parallel to provide enhanced throughput. For example, with four lanes running at 2.5 Gbits/s each and aggregate throughput of 10 Gbits/s is achieved. SpaceFibre multi-laning can operate with any number of lanes, from 1 to 16. Each lane is normally bi-directional, but to support spaceflight instruments with very high-data rate in one direction and to save mass and power, it is possible to have some uni-directional lanes in a multi-lane link, provided that at least one lane is bi-directional. SpaceFibre multi-laning also supports graceful degradation in the event of a lane failure. If a lane fails, the multi-lane link will rapidly reconfigure to use the remaining lanes so that important (high priority) information can still get through. It takes a couple of microseconds for this reconfiguration to occur, which happens without loss of information. Clearly, with reduced bandwidth some information will not be sent over the link, but this will be less important, low priority, information. If a redundant lane is available in the link, it can be enabled and full capacity operation will resume. SpaceFibre IP cores and test equipment are available from STAR-Dundee. The SpaceFibre ECSS standard is due to be published by the end of 2016.
 
The photograph shows multi-laning capability of SpaceFibre being demonstrated to spacecraft engineers at the DASIA 2016 conference held in May in Tallinn, Estonia. A four lane link was demonstrated with low priority high bandwidth traffic flowing over some virtual channels and high priority video data over another virtual channel. Lanes were unplugged with corresponding loss in bandwidth, but the link continued to operate sending the "critical" video data without interruption. Only when all four lanes were unplugged, did the video data stream cease. As soon as any of the four lanes were plugged back in, the video stream continued once more.
 

19 April 2016

32nd Space Symposium

STAR-Dundee recently exhibited at the 32nd Space Symposium held in Colorado Springs from April 11th to 14th, 2016. Located within the UK Space Pavilion, at booth 440 in the Lockheed Martin Exhibit Center, we demonstrated some of our latest SpaceWire and SpaceFibre products including the Brick Mk3 and STAR Fire.

3 March 2016

STAR-Dundee is to collaborate with Microsemi to provide SpaceWire and SpaceFibre network technology using Microsemi's RTG4 high-speed signal processing radiation-tolerant field programmable gate arrays (FPGAs).

"We are pleased to be working with Microsemi and leverage our unrivalled expertise to help the company expand the growing adoption of RTG4 FPGAs in SpaceWire and SpaceFibre applications," said our CEO, Steve Parkes. "Our commitment is to ensure our customers can begin working with our technologies as quickly as possible, and utilizing Microsemi's innovative RTG4 FPGAs can help the industry achieve this easily."

STAR-Dundee is a Microsemi FPGA & SoC Partner, offering SpaceWire and SpaceFibre IP for Microsemi radiation tolerant FPGAs including the RTAX and RTG4 devices.

Further details are provided in Microsemi's news release on the collaboration.

Information on the services that STAR-Dundee provides for Microsemi devices can be found on our STAR-Dundee Microsemi Partner page.  Also available on this page is a video featuring our CEO, demonstrating our SpaceWire and SpaceFibre IP on the RTG4.

2 March 2016

Iberian Peninsula

ESA's Sentinel-3A was successfully launched on the 16th of February. On board it has four instruments: Ocean and Land Colour Instrument (OLCI), Sea and Land Surface Temperature Radiometer (SLSTR), Synthetic Aperture Radar Altimeter (SRAL) and Microwave Radiometer (MWR). Amongst other marine and Earth observation applications, these instruments will allow Sentinel-3A to map sea-level change and surface temperature, perform water quality management and monitor vegetation health. 

Three point-to-point SpaceWire links are used between the higher data rate OLCI, SLSTR and SRAL instruments and the Sentinel-3A payload data handling unit (PDHU). 

The image shown features Spain, Portugal and North Africa and is one of the first images taken by the OLCI instrument.  

For more information please see the ESA Sentinel-3 website. 

Image © Copernicus data (2016)

Pages

Subscribe to News