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Abstract— CASTOR is a new radiation tolerant SPARC V8 

processor chip which is currently being developed by Atmel in 

partnership with STAR-Dundee. The chip is implemented on a 

90 nm radiation tolerant process which will deliver an expected 

processor clock speed of 200 MHz. The CASTOR chip is targeted 

at data processing and instrument control applications, and will 

deliver functional improvements over previous SPARC 

processors. The chip has eight SpaceWire interfaces running at 

200 MBits/s, a CAN bus interface and IEEE 1553 bus interface.  

At the core of the CASTOR chip is a number of dedicated high 

performance SpaceWire Remote Memory Access Protocol 

(RMAP) and Direct Memory Access (DMA) engine’s connected 

to the SpaceWire interfaces through a SpaceWire router. Each 

SpaceWire engine is capable of acting as an RMAP target, 

RMAP initiator or as a general purpose SpaceWire packet 

transmitter and receiver between the SpaceWire network and 

packet data defined in internal memory. Dedicated SpaceWire 

DMA channels are used to ensure software involvement in 

SpaceWire packet generation and reception is kept to a 

minimum. The SpaceWire interfaces support the SpaceWire-D 

protocol used for guaranteed latency and deterministic packet 

delivery. In conjunction with the RMAP initiator the chip can 

rapidly be configured as a highly capable SpaceWire-D initiator. 

The chip can act as an RMAP target, initiator or both. The 

RMAP target provides a mechanism to allow remote access to the 

internal memory space.  Two modes of operation are supported 

to allow direct access to a pre-defined area of memory or 

controlled access using authorisation by software. The RMAP 

initiator uses information stored in internal memory by the 

application software to access remote memory in equipment 

connected to the SpaceWire network. The engine is capable of 

initiating a number of RMAP transfers from remote memory, 

either writing data from internal memory to a remote memory 

location or receiving data from a remote memory location and 

writing it to internal memory, then interrupting the host when all 

transactions are complete. 

The DMA channels allow the application software to send and 

receive data packets using data structures defined in internal 

memory. Each SpaceWire engine has a number of DMA channels 

which can operate independently of each other. 

Index Terms—SpaceWire, CASTOR, RMAP, Sparc V8 

I. INTRODUCTION 

An onboard SpaceWire [1] system comprises a number of 

SpaceWire nodes and routers connected together through high 

speed serial links. The nodes on the SpaceWire network can be 

sensors, mass memories and processing units. CASTOR is a 

new radiation tolerant SPARC V8 processor chip which is 

currently being developed by Atmel in partnership with STAR-

Dundee. 

The CASTOR chip has eight SpaceWire interfaces to 

facilitate communication over the SpaceWire network. The 

application software running on the processor has access to a 

number of dedicated high performance SpaceWire Remote 

Memory Access Protocol (RMAP) [2] and Direct Memory 

Access (DMA) engines to provide RMAP and application 

specific packet generation and reception without excessive 

processor workload. 

II. FEATURES 

The CASTOR chip has dedicated RMAP target and 

initiator hardware which offloads RMAP packet generation and 

checking from the processor. The target can be configured to 

allow a remote unit to read and write memory locations inside 

the processor memory space without interrupting the host 

software. The initiator facilitates access to remote memory 

spaces through RMAP protocol commands and offloads 

multiple transaction generation and reply packet checking from 

the processor. 

A multi-channel DMA packet transmission and reception 

controller is available to the processor to send and receive data 

through a SpaceWire router. The DMA channels are optimised 

to support high throughput of SpaceWire packets with minimal 

interruption of the processor. Generation and checking of 

CRC-8 and CRC-16 checksums are supported by the DMA 

channels. 

Packets are routed to the SpaceWire network through an 

eight port SpaceWire router. This allows the CASTOR chip to 

connect too many peripherals and also act as a routing device. 



Protocol support is provided for the SpaceWire-D deterministic 

data delivery protocol [3], the SpaceWire plug and play 

protocol [4], multiple time-code counters and distributed 

interrupt time-codes [5]. 

III. SYSTEM ARCHITECTURE 

The system architecture is defined in Fig. 1. 

 

 
The SpaceWire engines contain an RMAP target [6], an 

RMAP initiator and a multi-channel DMA controller. Each 

engine facilitates packet generation and checking of RMAP 

and DMA transfers between the processor and the SpaceWire 

router, offloading the processor for other tasks. The SpaceWire 

router [7] has 8 SpaceWire ports running at 200 MBps and 3 

internal FIFO ports for connection to the engines. The routers 

internal configuration port, port 0, facilitates configuration of 

the internal registers through RMAP or Plug and Play. The 

APB interface is used to configure and read status registers 

from SpaceWire engines, time-code controller and SpaceWire 

router. The interrupt controller provides event notification to 

the host processor for packet, time-code and error events which 

occur. The time-code controller implements time-code 

forwarding and distributed interrupt forwarding. 

IV. SPACEWIRE ENGINE 

The CASTOR chip has three SpaceWire engines which can 

act as an RMAP target, an RMAP initiator and to transmit and 

receive data from internal memory through a multi-channel 

DMA controller. The engine performs memory accesses 

through an AHB master interface and is configured through an 

APB interface. 

The SpaceWire engine architecture is shown in Fig 2. The 

engine is comprised of a protocol multiplexer which connects 

to the SpaceWire router, an RMAP target, an RMAP initiator, a 

multi-channel DMA controller, an AHB interface and an APB 

interface. 

 

A. Protocol Multiplexer 

When sending, packets to the SpaceWire Router, the 

multiplexer selects the next packet to be sent and waits for the 

end of packet before selecting the next packet to be 

transmitted. 

When receiving, packets from the SpaceWire Router, the 

protocol de-multiplexer checks the first four packet bytes 

against a configurable pattern and mask to determine the 

destination of the packet, either RMAP target, RMAP initiator 

or a specific DMA channel. The pattern and mask are 

programmable by the host processor through the APB registers.  

The protocol multiplexer allows multiple destination nodes 

or multiple protocols to be handled by the DMA channels. A 

packet received at a node which conforms to the ECSS-E-ST-

50-51C [8] standard will have a leading logical address byte 

and a protocol identifier byte, followed by the packet cargo 

bytes and an end of packet. The protocol multiplexer transfers 

data packets from the RMAP target, initiator and the DMA 

channels into the SpaceWire FIFO. Arbitration is performed 

between the channels using a fair arbitration scheme where 

each packet source takes it in turn to transmit packets. 

B. RMAP target 

The RMAP target accepts RMAP commands from a remote 

system, performs read and write memory access commands 

over the AHB bus to system memory and returns an optional 

reply packet to the remote system. The target supports all 

RMAP commands with the option of limiting the commands 

which can be performed by configuration from software. A 16 

byte verified write buffer is provided to support verified write 

commands. 

An RMAP command received by the target is required to 

be authorised before it can access system memory. The 

processor can configure the RMAP target to act in two modes 

of operation. 

The first mode requires the host processor to authorise 

commands through the APB register interface. Authorisation is 

requested using the Interrupt output of the core. The host 

software should read all the authorisation fields and then 

decide if the command is valid by authorising the command 
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Fig. 2.  SpaceWire engine 
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Fig. 1.  System architecture 

 



through the RMAP target command register. When the target 

has completed the RMAP command it will interrupt the host 

processor again with the notification status. 

In the second operation mode the host processor sets which 

RMAP operations are authorised and the address range in 

which RMAP commands can operate. Any command which is 

performed outside of the address range or other authorisation 

fields is not authorised and recorded as an error. 

C. RMAP initiator 

The initiator uses the RMAP protocol to write data from 

system memory to a remote system, or read data from a remote 

system and place it in a pre-defined area of memory. The 

initiator can be used by the processor to collect data from 

remote targets into system memory and check the data 

received. The initiator uses RMAP transaction specific data 

structures in memory to control the command type and 

command fields which will be used to generate the RMAP 

packet. A transaction table is stored in memory to facilitate the 

transmission of multiple command packets before the replies 

for those commands have been received. The initiator validates 

all reply packet fields against the expected fields stored in the 

transaction table. If an error occurs the error is recorded and the 

reply packet is not acted upon. 

Before the initiator can be used to send RMAP commands 

it must be given space in system memory to store outstanding 

transactions. An outstanding transaction is required to tell the 

initiator where in memory it should store reply data and 

notification status 

The initiator is split into three separate entities: the encoder, 

decoder and timeout checker. Each of the initiator entities can 

operate in a different mode. The encoder and decoder have 

three modes of operation: notification mode, list mode and 

watchdog mode (modes 1, 2 and 3). The timeout checker has 

two modes of operation: notification mode and passive mode. 

Encoder/Decoder modes: 

In mode 1, notification mode, the initiator waits for the host 

software to respond to each initiator command sent and reply 

received before continuing. This mode is suitable for hosts 

which wish to know when commands are sent or received and 

process the command data and status immediately. 

In mode 2, command list mode, the initiator can send a 

number of commands or receive a number of replies before the 

host software is notified. The status for each command and 

reply is stored in a transaction defined notification area of 

memory. The host can check the command/reply status after 

the command list has been completed. 

In mode 3, watchdog mode, the initiator can send a number 

of commands and receive a number of replies while the host is 

waiting for a timer to expire or another interrupt/event to occur. 

The host uses the timer, or other interrupt/event, to check if the 

commands have completed and the status of each command. 

This mode is useful when the host needs to know if the 

commands have been sent within a defined time period but 

does not need to check the operation status until the time 

period has expired. 

The initiator implements an optional timeout counter for 

each outstanding transaction. When a reply is not received 

within the timeout period the transaction will be discarded and 

an error recorded. 

Timeout checker modes: 

In mode 1, notification mode, a transaction which times 

out, reply not received within the selected timeout period, will 

cause the notification bit in the status register to be set. The 

notification bit is acknowledged by the host software before the 

initiator can perform any further operations.  

In mode 2, passive mode, a transaction which times out will 

be deleted from the initiator table and no notification will be 

generated. The timeout status will be recorded in the 

transaction defined notification area of memory. 

D. Transmitting packets using the DMA channel transmitter 

The DMA controller supports multiple concurrent TX 

channels which can be programmed to send one or multiple 

SpaceWire packets continuously. Channels can be disabled and 

enabled at any time, affecting the data rate of the 

corresponding channel without producing data loss. This 

allows a simpler implementation of MAC algorithms by 

software. 

A packet consists of one or multiple data chunks stored in 

different memory locations. This allows the packet header to be 

stored in a different location that the packet data content.  

Sending of PUS [9] packets is supported by providing the 

hardware computation of its CRC-16. Continuous transmission 

of packets is provided using circular buffer architecture with 

data and packet descriptor pointers. Interrupts can be set to 

monitor the progress of transmission of packets without halting 

the actual operation. This makes it possible to achieve the 

maximum SpaceWire data rate with minimum CPU utilization. 

Errors in one channel do not affect the operation of other 

channels. 

E. Receiving packets using the DMA channel receivers 

Each channel can be associated to a different packet type or 

protocol using a packet filter based on the first four bytes of the 

header. Packets which are received on the same DMA channel 

are stored contiguously in memory and their packet length is 

stored in packet descriptors. Reception of RMAP packets is 

supported by providing the hardware computation of its CRC-

8. Reception of PUS packets is supported by providing the 

hardware computation of its CRC-16. Continuous reception of 

packets is provided using circular buffer architecture with data 

and packet descriptor pointers. It is possible to enforce that a 

packet is not split at the end of the memory region. Interrupts 

can be set to monitor the progress of packets received without 

halting the actual operation. The user application or the SW 

driver should free the space used by packets already processed. 

This procedure allows data to be received at the maximum 

SpaceWire data rate with minimum CPU utilization. When an 

error occurs the reception is halted and the system is 

interrupted. 



V. SPACEWIRE ROUTER 

The SpaceWire router has eight SpaceWire interfaces, three 

external port interfaces and an internal configuration port 

which supports the RMAP protocol. The internal configuration 

and status registers are also accessible through an APB 

interface. A control register is used to determine if the router is 

controlled through the configuration port or through the APB 

interface. Configuration by both masters at the same time is not 

supported although reading the status information from both 

masters at the same time is supported. 

The SpaceWire router architecture is illustrated in Fig 3. 

 

VI. TIME-CODE CONTROLLER 

The SpaceWire time-code controller has functions to 

forward time-codes dependent on the time-code flags or to 

generate time-codes from software, processor timer interrupt or 

an internal dedicated time-code master count. The time-code 

controller has a time-code register for each of the four time-

code flags, therefore allowing independent time-code 

forwarding for each flag code. 

The time-code controller stores the last time-code received 

for each type of control flag and can indicate to the host that a 

time-code has been received through the status/interrupt 

interface. 

The time-code forwarding mechanism checks that received 

time-codes are one more than the last time-code received then 

the time-code will be forwarded through all ports except the 

port the time-code arrived on. If the time-code is a distributed 

interrupt code then the interrupt vector is checked and the 

controller will forward the time-code if the interrupt vector bit 

is 0. If the interrupt vector bit is 1 the time-code is discarded as 

the interrupt has already been set. The time-code will be 

forwarded through all ports except the port the time-code was 

received on. 

The controller can act as a time-code master either by 

software insertion of a time-code, sending time-code on a 

processor timer interrupt or by setting up an internal time-code 

master counter. The time-code frequency can be controlled by 

the host software with up to 1 micro-second precision. 

Status bits and processor interrupts are provided for 

received time-codes for each time-code flag value, time-codes 

transmitted for each time-code flag value and distributed time-

code interrupt occurred. 

VII. CONCLUSION 

The CASTOR chip is a capable SpaceWire processing unit 

which comprises a SPARC V8 process with an enhanced 

floating point unit and memory management unit running at 

200 MHz on a radiation tolerant process. The SpaceWire 

engines inside the CASTOR chip provide high performance 

SpaceWire RMAP and DMA functions including dedicated 

RMAP target and initiator hardware to reduce the processor 

workload.  
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