
SpaceWire EGSE: Simulating an Instrument

STAR-System Application Note

Stuart Mills

 Application Note

SpaceWire EGSE: Simulating an Instrument
The SpaceWire Electronic Ground Support Equipment (EGSE) is a test and development unit that
simulates instruments or other SpaceWire equipment in real-time. The EGSE is configured using a simple
yet powerful scripting language designed specifically for SpaceWire applications. Once configured the
EGSE operates independent of software resulting in real-time performance. This can be used to rapidly
mimic the behaviour of SpaceWire equipment, vastly reducing traditional development time, risk and cost
associated with writing equivalent software in a real-time operating system.

This application note provides an example of how an instrument may be simulated using a SpaceWire
EGSE. Comparing this to traditional EGSE which requires complex and expensive real-time software
development, the time saving, risk reduction and cost benefits provided by the SpaceWire EGSE should
become clear.

Scenario
A company needs to simulate a SpaceWire instrument in order to develop and test the SpaceWire
components that will communicate with it: a control processor and mass memory module. The control
processor is responsible for setting the instrument’s mode. The mass memory module receives the
SpaceWire traffic transmitted from the instrument.

The instrument operates at a link speed of 200Mbits/s and has three modes. In “Mode 0” the instrument
is off. In “Mode 1” the instrument transmits 64kByte packets with random data at 150Mbits/s. In “Mode
2”, 1kByte packets with walking ones data are transmitted at 50Mbits/s. The mode is determined by the
two least significant bits of the instrument’s control register at address 1 (Mode 0 = 0b00, Mode 1 = 0b01
and Mode 2 = 0b10). RMAP write commands transmitted from the control processor change the value of
the control register and therefore govern the instrument’s mode.

Test Setup
The SpaceWire EGSE is connected to the host PC via USB and powered by a 5V power brick. A SpaceWire
cable connects interface one of the EGSE to the control processor. Interface two of the SpaceWire EGSE is
connected to the mass memory module. The diagram below illustrates this configuration.

Instrument Simulation Test Setup

SD_TN_007

2 SpaceWire EGSE: Simulating an Instrument

Scripting the Instrument Simulation
In order to configure the SpaceWire EGSE to simulate the instrument, a script must first be written that
defines the instrument’s behavior. In this example the link speed is first stipulated:

config

 spw_tx_rate(2, 200Mbps)

end config

The above statement sets the line rate of SpaceWire link two to 200Mbits/s.

Pattern matchers are then defined that match on the RMAP write commands that control the
instrument’s mode (note that comments are prefixed with the ‘#’ character):

match matchMode0RMAPRegWrite

 sop

 0xfe # Target logical address

 0x01 # Protocol ID (0x01 for RMAP)

 0x60 # Instruction (command, write single address, no reply)

 0x20 # Key

 # No reply address

 0xfe # Initiator logical address

 0x-- # Transaction ID (MS) (Ignore)

 0x-- # Transaction ID (LS) (Ignore)

 0x00 # Extended address (0)

 0x00 # Address byte 3 (MS)

 0x00 # Address byte 2

 0x00 # Address byte 1

 0x01 # Address byte 0 (LS) (1)

 0x00 # Data length byte 2 (MS)

 0x00 # Data length byte 1

 0x04 # Data length byte 0 (LS) (4 bytes)

 0x-- # Header CRC (Ignore)

 0x-- # Data byte 3 (MS) (Ignore)

 0x-- # Data byte 2 (Ignore)

 0x-- # Data byte 1 (Ignore)

 0b------00 # Data byte 0 (LS) (Mode 0 = 0b00)

 0x-- # Data CRC (Ignore)

 eop

end match

match matchMode1RMAPRegWrite

 sop

 0xfe # Target logical address

 0x01 # Protocol ID (0x01 for RMAP)

 0x60 # Instruction (command, write single address, no reply)

 0x20 # Key

 # No reply address

 0xfe # Initiator logical address

 0x-- # Transaction ID (MS) (Ignore)

 0x-- # Transaction ID (LS) (Ignore)

 0x00 # Extended address (0)

 0x00 # Address byte 3 (MS)

 0x00 # Address byte 2

 0x00 # Address byte 1

 0x01 # Address byte 0 (LS) (1)

 0x00 # Data length byte 2 (MS)

 0x00 # Data length byte 1

 0x04 # Data length byte 0 (LS) (4 bytes)

 0x-- # Header CRC (Ignore)

 0x-- # Data byte 3 (MS) (Ignore)

 0x-- # Data byte 2 (Ignore)

 0x-- # Data byte 1 (Ignore)

 0b------01 # Data byte 0 (LS) (Mode 1 = 0b01)

 0x-- # Data CRC (Ignore)

 SD_TN_007

3 SpaceWire EGSE: Simulating an Instrument

 eop

end match

match matchMode2RMAPRegWrite

 sop

 0xfe # Target logical address

 0x01 # Protocol ID (0x01 for RMAP)

 0x60 # Instruction (command, write single address, no reply)

 0x20 # Key

 # No reply address

 0xfe # Initiator logical address

 0x-- # Transaction ID (MS) (Ignore)

 0x-- # Transaction ID (LS) (Ignore)

 0x00 # Extended address (0)

 0x00 # Address byte 3 (MS)

 0x00 # Address byte 2

 0x00 # Address byte 1

 0x01 # Address byte 0 (LS) (1)

 0x00 # Data length byte 2 (MS)

 0x00 # Data length byte 1

 0x04 # Data length byte 0 (LS) (4 bytes)

 0x-- # Header CRC (Ignore)

 0x-- # Data byte 3 (MS) (Ignore)

 0x-- # Data byte 2 (Ignore)

 0x-- # Data byte 1 (Ignore)

 0b------10 # Data byte 0 (LS) (Mode 2 = 0b10)

 0x-- # Data CRC (Ignore)

 eop

end match

Three pattern matchers are defined above, each of which will match on an RMAP write command to the
control register (address 1). The first pattern matcher is called “matchMode0RMAPRegWrite” and
matches when the two least significant bits of the RMAP write data field equal 0b00. The second pattern
matcher is called “matchMode1RMAPRegWrite” and matches when the two least significant bits of the
RMAP write data field equal 0b01. The final pattern matcher is called “matchMode2RMAPRegWrite” and
matches when the two least significant bits of the RMAP write data field equal 0b10.

The pattern matchers are then associated with events:

events

 mode0RMAPPkt = match_rx(1, matchMode0RMAPRegWrite)

 mode1RMAPPkt = match_rx(1, matchMode1RMAPRegWrite)

 mode2RMAPPkt = match_rx(1, matchMode2RMAPRegWrite)

end events

Three received pattern matched events are defined. The first is named “mode0RMAPPkt” and is raised
when the traffic received on interface one matches that specified in the pattern matcher
“matchMode0RMAPRegWrite”. The second is named “mode1RMAPPkt” and is raised when the traffic
received on interface one matches that specified in the pattern matcher “matchMode1RMAPRegWrite”.
The final received pattern matched event is named “mode2RMAPPkt” and is raised when the traffic
received on interface one matches that specified in the pattern matcher “matchMode2RMAPRegWrite”.

Variables used to transmit packets with dynamic data (random and walking ones in this case) are then
defined:

variables

 random = rnd08()

 rotateLeft = rol08(1)

end variables

SD_TN_007

4 SpaceWire EGSE: Simulating an Instrument

A one byte random variable is declared named “random” along with a one byte bitwise rotate left variable
named “rotateLeft” with an initial value of one.

The packets transmitted in each mode are then defined:

packet mode1Pkt

 random * 32768

 random * 32768

 eop

end packet

packet mode2Pkt

 rotateLeft * 1024

 eop

end packet

A packet named “mode1Pkt” is defined that consists of 65536 references of the “random” variable
followed by an EOP marker. A packet named “mode2Pkt” is defined that consists of 1024 references of
the “rotateLeft” variable followed by an EOP marker. Note that the “random” variable references are split
over two lines because the maximum number of times a variable can be referenced on a single line is
65535.

A packet transmission schedule for each mode is then declared:

schedule mode0Schedule

end schedule

schedule mode1Schedule @ 150Mbps

 send mode1Pkt

end schedule

schedule mode2Schedule @ 50Mbps

 send mode2Pkt

end schedule

The first schedule is named “mode0Schedule” and transmits nothing. The second schedule is named
“mode1Schedule” and specifies that the packet named “mode1Pkt” should be transmitted as soon as the
schedule is executed at a data rate of 150Mbits/s. The third schedule is named “mode2Schedule” and
specifies that the packet named “mode2Pkt” should be transmitted as soon as the schedule is executed at
a data rate of 50Mbits/s.

Finally a state machine is defined:

statemachine 2

 initial state mode0

 do mode0Schedule

 LED colour is white

 on mode1RMAPPkt goto mode1 immediately

 on mode2RMAPPkt goto mode2 immediately

 end state

 state mode1

 do mode1Schedule repeatedly

 LED colour is green

 on mode0RMAPPkt goto mode0 immediately

 on mode2RMAPPkt goto mode2 immediately

 end state

 state mode2

 SD_TN_007

5 SpaceWire EGSE: Simulating an Instrument

 do mode2Schedule repeatedly

 LED colour is blue

 on mode0RMAPPkt goto mode0 immediately

 on mode1RMAPPkt goto mode1 immediately

 end state

end statemachine

A state machine is defined that is associated with SpaceWire interface two. It contains three states named
“mode0”, “mode1” and “mode2”. The starting state named “mode0” executes the schedule
“mode0Schedule” and transitions to “mode1” immediately if the “mode1RMAPPkt” event is detected and
“mode2” immediately if the “mode2RMAPPkt” event is detected. The state named “mode1” executes the
schedule “mode1Schedule” repeatedly and transitions to the “mode0” state immediately if the
“mode0RMAPPkt” event is detected and the “mode2” state immediately if the “mode2RMAPPkt” event is
detected. The state named “mode2” executes the schedule “mode2Schedule” repeatedly and transitions
to the “mode0” state immediately if the “mode0RMAPPkt” event is detected and the “mode1” state
immediately if the “mode1RMAPPkt” event is detected.

SpaceWire EGSE Instrument Simulation State Diagram

When the SpaceWire EGSE is configured using this script, it can operate in three states that correspond to
the three modes described in the scenario above. In the initial “mode0” state it does not transmit any
data. In the “mode1” state it transmits 64kByte packets with random data at a data rate of 150Mbits/s
from SpaceWire interface two. In the “mode2” state it transmits 1kByte packets with walking ones data at
a data rate of 50Mbits/s from SpaceWire interface two.

State transitions occur in response to RMAP write command packets received on SpaceWire interface
one. Whilst in the “mode0” or “mode2” state, if an RMAP write command is received that writes 0b01 to
the two least significant bits of the control register (address 1), a transition to the “mode1” state will
occur. Whilst in the “mode0” or “mode1” state, if an RMAP write command is received that writes 0b10
to the two least significant bits of the control register, a transition to the “mode2” state will occur. Finally,
whilst in the “mode1” or “mode2” state, if an RMAP write command is received that writes 0b00 to the
two least significant bits of the control register, a transition to the “mode0” state will occur.

The optional “LED colour is white”, “LED colour is green” and “LED colour is blue” statements in the state
machine provide a simple indicator of the current executing state. Whilst in the “mode0” state, the
central LED above SpaceWire interface two is white, in the “mode1” state it is green and in the “mode2”
state it is blue.

SD_TN_007

6 SpaceWire EGSE: Simulating an Instrument

Compiling the Script
A script must be compiled before the SpaceWire EGSE can be configured. The SpaceWire EGSE comes
with both a command line application and a GUI application that can be used to do this. In this example
the GUI application will be used. Once the SpaceWire EGSE is connected and powered on, the “egse_gui”
application is launched. A “Device Connection” window is presented where a connection to the
SpaceWire EGSE is opened.

Device Connection Window

When the “Device Connection” window is closed the main window is displayed.

Main Window

To create the new instrument script, the “New” toolbar button is selected. Alternatively if the script was
already created using a different text editor it can be opened using the “Open” toolbar button.

New and Open Toolbar Buttons

Once the instrument simulation has been scripted, it is compiled using the “Compile” toolbar button. If
the script has been newly created, a save window will prompt the user to save it. When the compile
completes, an output window is displayed that shows any compiler errors or warnings along with the final
compile status i.e. compile succeeded or failed.

 SD_TN_007

7 SpaceWire EGSE: Simulating an Instrument

Compiler Output

Configure the SpaceWire EGSE
Once a script has been compiled successfully the SpaceWire EGSE can be configured. With a connection to
the EGSE having previously been opened and the instrument script open, the “Run” toolbar button is
selected.

Run Toolbar Button

This configures the SpaceWire EGSE in such a way that it behaves as specified in the instrument script.
Once configured it operates independent of software resulting in real-time behavior.

Resulting SpaceWire Traffic
As soon as the SpaceWire EGSE is configured it operates as defined in the instrument script: the link
speed of SpaceWire interface two is set to 200Mbits/s and the EGSE starts in “mode0”. The following
screenshots were taken using a SpaceWire Link Analyser Mk2.

200Mbits/s Link Speed

SD_TN_007

8 SpaceWire EGSE: Simulating an Instrument

When a “mode1” RMAP write command is received on SpaceWire interface one, 64kByte packets of
random data are transmitted from interface two repeatedly at a data rate of 150Mbits/s.

64kByte Packets with Random Data Transmitted at 150Mbits/s

When a “mode2” RMAP write command is received on SpaceWire interface one, 1kByte packets
consisting of walking ones data are transmitted from interface two repeatedly at 50Mbits/s.

1kByte Packets with Walking Ones Data Transmitted at 50Mbits/s

When the “mode2” RMAP write command is received an immediate state transition occurs. This results in
an EEP being appended to the current packet in transmission from SpaceWire interface two and the
remaining packet cargo not being sent. Alternatively it is possible to specify transitions to occur once the
current schedule completes or once the current packet transmission completes.

When a “mode0” RMAP write command is received on SpaceWire interface one, the EGSE stops
transmitting data from interface two.

Conclusion
This application note demonstrates how the SpaceWire EGSE and its associated scripting language could
be used to very quickly simulate a SpaceWire instrument. It has introduced some of the key concepts of
the EGSE scripting language (link speed configuration, pattern matching, events, variables, packet
definitions, scheduling and state machines), shown one way in which the EGSE can be operated (script
creation, compilation and EGSE configuration via the GUI application) and shown the performance
possible thanks to the EGSE’s ability to operate independent of software.

This example is relatively simple and only touches on the range of features both the EGSE hardware and
software provide. For more information please visit our website at www.star-dundee.com or contact us at
enquiries@star-dundee.com.

http://www.star-dundee.com/
mailto:enquiries@star-dundee.com

