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Abstract— A SpaceFibre [1] [2] Processor Endpoint has been
developed to provide ultra-fast SpaceFibre communication for
System-on-Chips (SoCs) with processors running an operating
system such as Linux. The SpaceFibre Processor Endpoint
provides a hardware-accelerated interface between user-space
software applications and a SpaceFibre network. This approach
significantly offloads work from the processor, enabling data
rates in and out of user-space memory at tens of Gbit/s with
minimal processor overhead.

SpaceFibre is the next-generation of SpaceWire [3] [4],
providing multi-Gbit/s on-board networking; novel quality-of-
service including priority, bandwidth reservation and
scheduling; built-in fault detection, isolation and recovery; and
low-latency broadcast messaging for time-distribution,
synchronisation, event signalling and error notification. At the
packet level, SpaceFibre is backwards compatible with
SpaceWire, making it straightforward to integrate existing
SpaceWire equipment into a SpaceFibre network.

SpaceFibre supports very high data rates using multi-lane
links. For example, in recent work [5], an experimental
SpaceFibre link was demonstrated at 100 Gbit/s in an AMD
Versal Adaptive SoC [6] under heavy-ion radiation testing using
a quad-lane link with each lane operating at 25 Gbit/s.

The SpaceFibre Processor Endpoint has been developed to
support these very high data rates efficiently. This paper first
introduces the SpaceFibre Processor Endpoint and software.
Next, it describes the use of the SpaceFibre Processor Endpoint
in different platforms. Finally, performance results are
provided, illustrating the benefits of using the SpaceFibre
Processor Endpoint.
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1. INTRODUCTION

The primary objective of the SpaceFibre Processor
Endpoint is to provide a rapid and simple way to integrate one
or more SpaceFibre interfaces into an on-board processing
system, with full software support designed to provide
maximum performance with minimal processor overhead.

In previous work [7], Remote Direct Memory Access
(RDMA) over SpaceFibre was implemented for Linux using
an AMD Zynq UltraScale+ MPSoC (ZCU102) development
board [8]. The SpaceFibre link in that implementation was a
quad-lane link running at a lane rate of 7.8125 Gbit/s,
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providing a link rate of 31.25 Gbit/s, and a maximum user data
rate of 23.8 Gbit/s. Performance results showed
approximately 23 Gbit/s data rates while using less than 1%
processor utilisation.

The SpaceFibre Processor Endpoint follows on from the
RDMA over SpaceFibre activity, using similar hardware-
accelerated techniques. However, it does not require a specific
packet format, which allows it to be used to communicate with
any SpaceFibre system, not just those that implement RDMA
over SpaceFibre. The SpaceFibre Processor Endpoint is also
targeting much higher link rates and includes additional
capabilities including low-latency software support for
sending and receiving SpaceFibre broadcast messages, as well
as support for SpaceWire interfaces. The SpaceFibre
broadcast message capability can be used for various purposes
including, for example, receiving status information or error
notifications from other devices, or sending trigger commands
to other devices.

II. TARGET PLATFORMS

The initial platforms that the SpaceFibre Processor
Endpoint has been implemented in include AMD’s Zynq
UltraScale+ MPSoC and Microchip’s PolarFire SoC [9], and
it will be tested in AMD’s Versal Adaptive SoC in the near
future.

For these platforms, the SpaceFibre Processor Endpoint IP
core is implemented in the Programmable Logic (PL) of the
SoC, with the software running in Linux on the Processing
System (PS). A device-tree entry is then used to make the
SpaceFibre Processor Endpoint available to the supporting
Linux platform driver.

Alternatively, the SpaceFibre Processor Endpoint can also
be connected to other processor systems by implementation in
a standalone Field Programmable Gate Array (FPGA) such as
Microchip’s PolarFire FPGA, with the software running in
Linux on an external processor. A high-speed interconnect in
the FPGA such as Peripheral Component Interconnect
Express (PCle) is then used to make the SpaceFibre Processor
Endpoint available to the supporting Linux PCle driver.

In addition to the Linux version, a bare-metal version of
the software is being developed to allow the SpaceFibre
Processor Endpoint to be used in applications where a full
operating system is not required or possible.



A photograph showing the SpaceFibre Processor Endpoint
implemented in a Microchip PolarFire FPGA Evaluation Kit
(MPF300) [10] is provided in Fig. 1.

Fig. 1. SpaceFibre Processor Endpoint on Microchip PolarFire

In Fig. 1, the SpaceFibre Processor Endpoint is
implemented in the Microchip PolarFire FPGA, connected to
an external processor over PCle via an extender cable, and
connected to the SpaceFibre network using a Small Form-
Factor Pluggable Plus (SFP+) cable assembly.

Another photograph showing the SpaceFibre Processor
Endpoint implemented in an AMD Zynq UltraScale+ MPSoC
(ZCU102) development board is provided in Fig. 2.
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Fig. 2. SpaceFibre Processor Endpoint on AMD Zynq UltraScale+
MPSoC (ZCU102)

In Fig. 2, the SpaceFibre Processor Endpoint is
implemented in the PL of the AMD Zynq UltraScale+ MPSoC
(ZCU102), with the software running in PetaLinux 2022.1 in
the ARM Cortex-A53 Central Processing Unit (CPU) of the
PS. In this case, the SpaceFibre Processor Endpoint has a
quad-lane SpaceFibre link, with a lane signalling rate of 7.5
Gbit/s, resulting in a link rate of 30 Gbit/s. The SpaceFibre
Processor Endpoint is connected to a STAR-Ultra PCle
Interface [11] board using a Quad SFP+ (QSFP+) to 4xSFP+
cable assembly.

III. ARCHITECTURE

A high-level block diagram illustrating the architecture of
the SpaceFibre Processor Endpoint is provided in Fig. 3.
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Fig. 3. SpaceFibre Processor Endpoint Architecture

In Fig. 3, the architecture is divided into four layers, from
the network to the user applications.

In the bottom layer, the SpaceFibre Processor Endpoint
consists of a configurable number of SpaceWire ports and a
configurable number of SpaceFibre Virtual Channels (VCs),
which are contained in one or more SpaceFibre ports.

In the next layer, the SpaceFibre Processor Endpoint IP
provides interfaces to the SpaceWire ports and/or SpaceFibre
ports and VCs. These interfaces are used to transfer packets,
time-codes (for SpaceWire ports) and broadcast messages (for
SpaceFibre ports) to and from the SpaceFibre Processor
Endpoint IP and the SpaceWire and/or SpaceFibre networks.

Above the SpaceFibre Processor Endpoint IP is the kernel-
space drivers, which provide interfaces between the host
processor and the SpaceFibre Processor Endpoint IP. There is
a small hardware abstraction layer in the core of the kernel-
space drivers that handles the differences between devices
connected by a PCle interface (for standalone FPGAs) and
devices connected by a platform interface (for SoCs).

Finally, above the kernel-space drivers is the user-space
Application Programming Interfaces (APIs), which provide
an interface between the user applications and the kernel-
space drivers. Additionally, the kernel-space drivers set up the
direct path between the user-space APIs and the SpaceFibre
Processor Endpoint IP.



IV. PERFORMANCE TESTING

Performance testing of the SpaceFibre Processor Endpoint
was conducted to measure the data rates and CPU utilisation
when sending and receiving SpaceFibre packets of increasing
lengths and varying strategies.

The following sections describe the performance test
setup, procedures, and results.
A. Performance Test Setup

A high-level block diagram illustrating the performance
test setup is provided in Fig. 4.
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Fig. 4. Performance Test Setup

In Fig. 4, the block on the left is the Test PC which has the
following specification:

e Intel 19-9900K CPU

e 128 GB DDR4 memory
e 512 GB NVMe storage
e  Windows 11 Pro

The Test PC contains a STAR-Ultra PCle, which is a
SpaceFibre test and development product with two quad-lane
SpaceFibre interfaces and a PCle Gen 3 eight-lane interface to
the host. The STAR-Ultra PCle uses the STAR-System PCle
driver and APIs [12] to send and receive SpaceFibre packets.

The block on the right of Fig. 4 is the AMD Zynq
UltraScale+ MPSoC (ZCU102), which has an ARM Cortex-
AS53 CPU in the PS, and the SpaceFibre Processor Endpoint
implemented in the PL, providing a quad-lane SpaceFibre
interface. The ZCU102 uses the SpaceFibre Processor
Endpoint platform driver and APIs to send and receive
SpaceFibre packets.

The quad-lane SpaceFibre link between the STAR-Ultra
PCle and the SpaceFibre Processor Endpoint is provided using
a QSFP+ to 4xSFP+ cable assembly between the QSFP+
connector on the STAR-Ultra PCle, and the SFP+ connectors
on the ZCU102.

The lane signalling rate is configured to 7.5 Gbit/s on the
STAR-Ultra PCle and the SpaceFibre Processor Endpoint,
providing an overall link signalling rate of 30 Gbit/s. With a
30 Gbit/s link signalling rate, the maximum unidirectional
data rate is approximately 22.9 Gbit/s, and the maximum
bidirectional data rate is approximately 22.2 Gbit/s.

B. Performance Test Procedures
Performance tests were conducted using the following test
scenarios:

e Sending single packets at a time from the
SpaceFibre Processor Endpoint, received by the
STAR-Ultra PCle.

e Sending multiple packets at a time from the
SpaceFibre Processor Endpoint, received by the
STAR-Ultra PCle.

e Receiving single packets at a time on the
SpaceFibre Processor Endpoint, sent by the
STAR-Ultra PCle.

e Receiving multiple packets at a time on the
SpaceFibre Processor Endpoint, sent by the
STAR-Ultra PCle.

For all scenarios, the performance tests were conducted for
a range of packet lengths, from 1 KB to 256 KB, increasing in
powers of 2. At each packet size, the scenarios were repeated
for 10 iterations of 10 seconds each.

During the execution of the performance tests, the data rate
was measured using the total number of bytes sent or received
on the SpaceFibre Processor Endpoint, and CPU utilisation
was measured using the Linux kernel/system statistics files.

C. Performance Test Results

The following sections provide results for the performance
test scenarios listed in the previous section.

1) Sending Single Packets

When sending single packets with the SpaceFibre
Processor Endpoint, there is no per-byte copy overhead for the
packet data, as data is read by the SpaceFibre Processor
Endpoint directly from user-space memory. The overhead
consists of a per-packet cost to submit the send operations and
handle the interrupts signalling the completion of the send
operations.

For this test scenario, each packet is submitted and waited
on for its completion before moving on to the next packet.

The performance results for sending single packets at a
time are illustrated in Fig. 5.



Processor Endpoint Send Performance (30 Gbit/s SpaceFibre, Single Packets)
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Fig. 5. Sending Single Packets Chart

In Fig. 5 (and subsequent performance charts), the data
rate (Gbit/s) is plotted in purple, and the CPU utilisation (%)
is plotted in green. The left-vertical axis shows the data rate,
and the right-vertical axis shows the CPU utilisation. The
horizonal axis shows the packet length (KB), increasing from
left to right. For each test case, the results for each iteration
are drawn as points, and the lines are drawn through the
average of those points.

As shown in Fig. 5, when sending single packets, the CPU
utilisation is initially high because, as described above, there
is an overhead to submit each send operation and process its
completion interrupt. As the packet length increases, the CPU
utilisation reduces, and the data rate increases, because there
are fewer, larger packets being sent every second.

When the packet length reaches 256 KB, the data rate
achieved is over 20 Gbit/s, and the CPU utilisation is
approximately 2.5%. The intention of this scenario is to
demonstrate that high performance can be achieved even with
the simplest approach.

The performance results for sending single packets at a
time are listed in Table I, with the average values across all
iterations, followed by the worst-case in parentheses.

TABLE L. SENDING SINGLE PACKETS TABLE
Test Case Data Rate (Gbit/s) CPU Utilisation (%)
1 KB 1.57 (1.57) 25.06 (25.10)
2 KB 3.16 (3.16) 25.09 (25.10)
4KB 4.87 (4.86) 24.86 (24.99)
8 KB 5.70 (5.70) 15.68 (16.06)
16 KB 8.13 (8.08) 13.80 (14.27)
32KB 13.14 (13.12) 11.48 (12.35)
64 KB 17.07 (17.05) 7.09 (7.51)
128 KB 19.55 (19.54) 4.70 (5.15)
256 KB 21.09 (21.09) 2.49 (2.78)

2) Sending Multiple Packets

To increase the data rate and reduce the CPU utilisation
when sending packets, the per-packet overhead needs to be
reduced. This can be done simply by grouping multiple
packets together into single operations. Doing this coalesces
the completion interrupts together and changes the per-packet
overhead to a per-group overhead, meaning there is one send
operation submission for a group of packets, and one interrupt
signalling their completion.

For this test scenario, the group size is set to either 128 or
the maximum number of packets that fit within a 1 MB buffer
e.g., 8 KBx 128, 16 KB x 64, and so on. Each group of packets
is submitted and waited on for its completion before moving
on to the next group.

The performance results for sending multiple packets at a
time are illustrated in Fig. 6.
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Fig. 6. Sending Multiple Packets Chart

As shown in Fig. 6, the data rate and CPU utilisation
results starting at 1 KB packets are significantly better than the
results in Fig. 5, because the packets are being sent in groups
of 128 at a time. This trend continues until the data rate
saturates at just over 22 Gbit/s with a CPU utilisation of less
than 1%.

The performance results for sending multiple packets at a
time are listed in Table II, with the average values across all
iterations, followed by the worst-case in parentheses.

TABLE II. SENDING SINGLE PACKETS TABLE
Test Case Data Rate (Gbit/s) CPU Utilisation (%)
1 KB x 128 13.83 (13.73) 4.94 (5.06)
2 KB x 128 19.19 (19.19) 3.79 (4.10)
4KB x 128 21.19 (21.19) 2.15(2.33)
8 KB x 128 22.01 (22.01) 0.51 (0.61)
16 KB x 64 2222 (22.21) 0.71 (0.81)
32KB x 32 22.31(22.31) 0.73 (0.80)
64 KB x 16 22.36 (22.36) 0.56 (0.68)
128 KBx 8 22.39 (22.39) 0.79 (0.88)
256 KB x 4 22.41 (22.40) 0.68 (0.75)

3) Receiving Single Packets

When receiving packets with the SpaceFibre Processor
Endpoint, similar to sending packets, there is no per-byte copy
overhead for the packet data, as data is written by the
SpaceFibre Processor Endpoint directly to user-space
memory. The overhead depends on the incoming traffic
pattern, as the receiving software will either consume
immediately available data, or it will block waiting for an
interrupt signalling that there is new data available.

For this test scenario, the completion for each packet is
processed one at a time before moving on to the next packet.

The performance results for receiving single packets at a
time are illustrated in Fig. 7.
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Fig. 7. Receiving Single Packets Chart

As shown in Fig. 7, when receiving single packets, the
CPU utilisation is initially high because, similar to sending
single packets, there is an overhead to process and clear a
completion for each received packet. As the packet length
increases, the CPU utilisation reduces, and the data rate
increases, because there are fewer, larger packets being
received every second.

Similar to sending single packets at a time, the intention of
this scenario is to demonstrate that high performance can be
achieved even with the simplest approach.

The performance results for receiving single packets at a
time are listed in Table III, with the average values across all
iterations, followed by the worst-case in parentheses.

TABLE III. RECEIVING SINGLE PACKETS TABLE
Test Case Data Rate (Gbit/s) CPU Utilisation (%)
1KB 2.20 (2.19) 22.82 (22.90)
2 KB 4.40 (4.40) 22.82 (22.86)
4KB 8.80 (8.79) 22.81 (22.83)
8 KB 14.77 (14.76) 22.79 (22.83)
16 KB 17.04 (17.03) 18.89 (19.23)
32 KB 18.47 (18.46) 13.95 (14.30)
64 KB 19.27 (19.26) 7.72 (7.88)
128 KB 19.69 (19.69) 3.85(3.95)
256 KB 19.92 (19.91) 1.94 (2.02)

4) Receiving Multiple Packets

To increase the data rate and reduce the CPU utilisation
when receiving packets, the completion processing overhead
needs to be reduced. This is not as simple as the send side,
where packets can be queued and dispatched in groups of N

packets, because in a typical application a receiver does not
know exactly when or how many packets will arrive so it
cannot wait for a fixed number of packets to be received
before processing them.

An alternative approach is to wait until the buffers reach a
fill threshold, or a timeout occurs, before handling multiple
completions at a time. There is a trade-off between reducing
latency by processing data as soon as it arrives vs reducing
overhead by delaying the processing of data. The SpaceFibre
Processor Endpoint software supports multiple polling and
blocking options when waiting for operations to complete. For
example, the status of an operation can be checked via polling,
waited on indefinitely, or waited on with a configurable
timeout. This allows a receiver to be tuned appropriately for
an application’s traffic patterns and requirements.

The performance results for receiving multiple packets,
using the threshold filling approach, are illustrated in Fig. 8.
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Fig. 8. Receiving Multiple Packets Chart

As shown in Fig. 8, the data rate and CPU utilisation
results starting at 1 KB packets are significantly better than
the results in Fig. 7. The CPU utilisation continues to be
lower as the packet size increases, until the data rate
saturates at approximately 20 Gbit/s.

In this scenario, the threshold was set to 25% and the
timeout was set to 100 ps, meaning that a receive operation
would wait until either the buffer was 25% full or a 100 pus
timeout had passed after a newly received packet before
handling the current set of receive completions.

The performance results for receiving multiple packets,
using the threshold filling approach, are listed in Table IV,
with the average values across all iterations, followed by the
worst-case in parentheses.

TABLE IV. RECEIVING MULTIPLE PACKETS TABLE
Test Case Data Rate (Gbit/s) CPU Utilisation (%)

1 KB 11.96 (11.96) 3.81(4.92)
2 KB 13.49 (13.48) 2.98 (3.16)
4 KB 13.61 (13.61) 2.72 (2.92)
8 KB 15.42 (15.42) 1.83 (1.95)
16 KB 17.49 (17.48) 1.72 (2.02)
32KB 18.76 (18.75) 1.56 (1.70)
64 KB 19.46 (19.46) 1.59 (1.72)
128 KB 19.83 (19.82) 1.84 (2.01)
256 KB 20.02 (20.02) 1.27 (1.54)

V. FUTURE WORK

In a recent radiation test, an experimental SpaceFibre
link was demonstrated running at 100 Gbit/s in an AMD
Versal SoC. To support these extremely high link rates

effectively and efficiently in software-based systems,
testing of the SpaceFibre Processor Endpoint will be
conducted in the near future with AMD Versal SoC devices
at a link rate of 100 Gbit/s.

VI. CONCLUSIONS

The SpaceFibre Processor Endpoint has been developed
to provide a rapid and simple way to integrate one or more
SpaceFibre interfaces into an on-board processing system,
such as a SoC, with full software support designed to
provide maximum performance with minimal processor
overhead.

The SpaceFibre Processor Endpoint consists of an IP
core, Linux drivers, and supporting software, providing a
hardware-accelerated  interface  between  user-space
software applications and a SpaceFibre network. By
significantly reducing the work that the processor has to
perform to send and receive user data, it provides maximum
performance with minimal processor overhead.

The performance results presented in this paper included
the data rate and CPU utilisation figures for various sending
and receiving scenarios for packets of increasing sizes. The
results demonstrated that high performance can be achieved
even with the simplest use of the software, and performance
can then be significantly improved using straightforward
optimisations.
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