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Abstract— A SpaceFibre [1] [2] Processor Endpoint has been 

developed to provide ultra-fast SpaceFibre communication for 

System-on-Chips (SoCs) with processors running an operating 

system such as Linux. The SpaceFibre Processor Endpoint 

provides a hardware-accelerated interface between user-space 

software applications and a SpaceFibre network. This approach 

significantly offloads work from the processor, enabling data 

rates in and out of user-space memory at tens of Gbit/s with 

minimal processor overhead. 

SpaceFibre is the next-generation of SpaceWire [3] [4], 

providing multi-Gbit/s on-board networking; novel quality-of-

service including priority, bandwidth reservation and 

scheduling; built-in fault detection, isolation and recovery; and 

low-latency broadcast messaging for time-distribution, 

synchronisation, event signalling and error notification. At the 

packet level, SpaceFibre is backwards compatible with 

SpaceWire, making it straightforward to integrate existing 

SpaceWire equipment into a SpaceFibre network. 

SpaceFibre supports very high data rates using multi-lane 

links. For example, in recent work [5], an experimental 

SpaceFibre link was demonstrated at 100 Gbit/s in an AMD 

Versal Adaptive SoC [6] under heavy-ion radiation testing using 

a quad-lane link with each lane operating at 25 Gbit/s. 

The SpaceFibre Processor Endpoint has been developed to 

support these very high data rates efficiently. This paper first 

introduces the SpaceFibre Processor Endpoint and software. 

Next, it describes the use of the SpaceFibre Processor Endpoint 

in different platforms. Finally, performance results are 

provided, illustrating the benefits of using the SpaceFibre 

Processor Endpoint. 
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I. INTRODUCTION 

The primary objective of the SpaceFibre Processor 
Endpoint is to provide a rapid and simple way to integrate one 
or more SpaceFibre interfaces into an on-board processing 
system, with full software support designed to provide 
maximum performance with minimal processor overhead. 

In previous work [7], Remote Direct Memory Access 
(RDMA) over SpaceFibre was implemented for Linux using 
an AMD Zynq UltraScale+ MPSoC (ZCU102) development 
board [8]. The SpaceFibre link in that implementation was a 
quad-lane link running at a lane rate of 7.8125 Gbit/s, 

providing a link rate of 31.25 Gbit/s, and a maximum user data 
rate of 23.8 Gbit/s. Performance results showed 
approximately 23 Gbit/s data rates while using less than 1% 
processor utilisation. 

The SpaceFibre Processor Endpoint follows on from the 
RDMA over SpaceFibre activity, using similar hardware-
accelerated techniques. However, it does not require a specific 
packet format, which allows it to be used to communicate with 
any SpaceFibre system, not just those that implement RDMA 
over SpaceFibre. The SpaceFibre Processor Endpoint is also 
targeting much higher link rates and includes additional 
capabilities including low-latency software support for 
sending and receiving SpaceFibre broadcast messages, as well 
as support for SpaceWire interfaces. The SpaceFibre 
broadcast message capability can be used for various purposes 
including, for example, receiving status information or error 
notifications from other devices, or sending trigger commands 
to other devices. 

II. TARGET PLATFORMS 

The initial platforms that the SpaceFibre Processor 
Endpoint has been implemented in include AMD’s Zynq 
UltraScale+ MPSoC and Microchip’s PolarFire SoC [9], and 
it will be tested in AMD’s Versal Adaptive SoC in the near 
future. 

For these platforms, the SpaceFibre Processor Endpoint IP 
core is implemented in the Programmable Logic (PL) of the 
SoC, with the software running in Linux on the Processing 
System (PS). A device-tree entry is then used to make the 
SpaceFibre Processor Endpoint available to the supporting 
Linux platform driver. 

Alternatively, the SpaceFibre Processor Endpoint can also 
be connected to other processor systems by implementation in 
a standalone Field Programmable Gate Array (FPGA) such as 
Microchip’s PolarFire FPGA, with the software running in 
Linux on an external processor. A high-speed interconnect in 
the FPGA such as Peripheral Component Interconnect 
Express (PCIe) is then used to make the SpaceFibre Processor 
Endpoint available to the supporting Linux PCIe driver. 

In addition to the Linux version, a bare-metal version of 
the software is being developed to allow the SpaceFibre 
Processor Endpoint to be used in applications where a full 
operating system is not required or possible. 



A photograph showing the SpaceFibre Processor Endpoint 
implemented in a Microchip PolarFire FPGA Evaluation Kit 
(MPF300) [10] is provided in Fig. 1. 

 

Fig. 1. SpaceFibre Processor Endpoint on Microchip PolarFire 

In Fig. 1, the SpaceFibre Processor Endpoint is 
implemented in the Microchip PolarFire FPGA, connected to 
an external processor over PCIe via an extender cable, and 
connected to the SpaceFibre network using a Small Form-
Factor Pluggable Plus (SFP+) cable assembly. 

Another photograph showing the SpaceFibre Processor 
Endpoint implemented in an AMD Zynq UltraScale+ MPSoC 
(ZCU102) development board is provided in Fig. 2. 

 

Fig. 2. SpaceFibre Processor Endpoint on AMD Zynq UltraScale+ 

MPSoC (ZCU102) 

In Fig. 2, the SpaceFibre Processor Endpoint is 
implemented in the PL of the AMD Zynq UltraScale+ MPSoC 
(ZCU102), with the software running in PetaLinux 2022.1 in 
the ARM Cortex-A53 Central Processing Unit (CPU) of the 
PS. In this case, the SpaceFibre Processor Endpoint has a 
quad-lane SpaceFibre link, with a lane signalling rate of 7.5 
Gbit/s, resulting in a link rate of 30 Gbit/s. The SpaceFibre 
Processor Endpoint is connected to a STAR-Ultra PCIe 
Interface [11] board using a Quad SFP+ (QSFP+) to 4xSFP+ 
cable assembly. 

III. ARCHITECTURE 

A high-level block diagram illustrating the architecture of 
the SpaceFibre Processor Endpoint is provided in Fig. 3. 

 

Fig. 3. SpaceFibre Processor Endpoint Architecture 

In Fig. 3, the architecture is divided into four layers, from 
the network to the user applications. 

In the bottom layer, the SpaceFibre Processor Endpoint 
consists of a configurable number of SpaceWire ports and a 
configurable number of SpaceFibre Virtual Channels (VCs), 
which are contained in one or more SpaceFibre ports. 

In the next layer, the SpaceFibre Processor Endpoint IP 
provides interfaces to the SpaceWire ports and/or SpaceFibre 
ports and VCs. These interfaces are used to transfer packets, 
time-codes (for SpaceWire ports) and broadcast messages (for 
SpaceFibre ports) to and from the SpaceFibre Processor 
Endpoint IP and the SpaceWire and/or SpaceFibre networks. 

Above the SpaceFibre Processor Endpoint IP is the kernel-
space drivers, which provide interfaces between the host 
processor and the SpaceFibre Processor Endpoint IP. There is 
a small hardware abstraction layer in the core of the kernel-
space drivers that handles the differences between devices 
connected by a PCIe interface (for standalone FPGAs) and 
devices connected by a platform interface (for SoCs). 

Finally, above the kernel-space drivers is the user-space 
Application Programming Interfaces (APIs), which provide 
an interface between the user applications and the kernel-
space drivers. Additionally, the kernel-space drivers set up the 
direct path between the user-space APIs and the SpaceFibre 
Processor Endpoint IP. 



IV. PERFORMANCE TESTING 

Performance testing of the SpaceFibre Processor Endpoint 
was conducted to measure the data rates and CPU utilisation 
when sending and receiving SpaceFibre packets of increasing 
lengths and varying strategies. 

The following sections describe the performance test 
setup, procedures, and results. 

A. Performance Test Setup 

A high-level block diagram illustrating the performance 
test setup is provided in Fig. 4. 

 

Fig. 4. Performance Test Setup 

In Fig. 4, the block on the left is the Test PC which has the 
following specification: 

• Intel i9-9900K CPU 

• 128 GB DDR4 memory 

• 512 GB NVMe storage 

• Windows 11 Pro 

The Test PC contains a STAR-Ultra PCIe, which is a 
SpaceFibre test and development product with two quad-lane 
SpaceFibre interfaces and a PCIe Gen 3 eight-lane interface to 
the host. The STAR-Ultra PCIe uses the STAR-System PCIe 
driver and APIs [12] to send and receive SpaceFibre packets. 

The block on the right of Fig. 4 is the AMD Zynq 
UltraScale+ MPSoC (ZCU102), which has an ARM Cortex-
A53 CPU in the PS, and the SpaceFibre Processor Endpoint 
implemented in the PL, providing a quad-lane SpaceFibre 
interface. The ZCU102 uses the SpaceFibre Processor 
Endpoint platform driver and APIs to send and receive 
SpaceFibre packets. 

The quad-lane SpaceFibre link between the STAR-Ultra 
PCIe and the SpaceFibre Processor Endpoint is provided using 
a QSFP+ to 4xSFP+ cable assembly between the QSFP+ 
connector on the STAR-Ultra PCIe, and the SFP+ connectors 
on the ZCU102. 

The lane signalling rate is configured to 7.5 Gbit/s on the 
STAR-Ultra PCIe and the SpaceFibre Processor Endpoint, 
providing an overall link signalling rate of 30 Gbit/s. With a 
30 Gbit/s link signalling rate, the maximum unidirectional 
data rate is approximately 22.9 Gbit/s, and the maximum 
bidirectional data rate is approximately 22.2 Gbit/s. 

B. Performance Test Procedures 

Performance tests were conducted using the following test 
scenarios: 

• Sending single packets at a time from the 
SpaceFibre Processor Endpoint, received by the 
STAR-Ultra PCIe. 

• Sending multiple packets at a time from the 
SpaceFibre Processor Endpoint, received by the 
STAR-Ultra PCIe. 

• Receiving single packets at a time on the 
SpaceFibre Processor Endpoint, sent by the 
STAR-Ultra PCIe. 

• Receiving multiple packets at a time on the 
SpaceFibre Processor Endpoint, sent by the 
STAR-Ultra PCIe. 

For all scenarios, the performance tests were conducted for 
a range of packet lengths, from 1 KB to 256 KB, increasing in 
powers of 2. At each packet size, the scenarios were repeated 
for 10 iterations of 10 seconds each. 

During the execution of the performance tests, the data rate 
was measured using the total number of bytes sent or received 
on the SpaceFibre Processor Endpoint, and CPU utilisation 
was measured using the Linux kernel/system statistics files. 

C. Performance Test Results 

The following sections provide results for the performance 
test scenarios listed in the previous section. 

1) Sending Single Packets 

When sending single packets with the SpaceFibre 
Processor Endpoint, there is no per-byte copy overhead for the 
packet data, as data is read by the SpaceFibre Processor 
Endpoint directly from user-space memory. The overhead 
consists of a per-packet cost to submit the send operations and 
handle the interrupts signalling the completion of the send 
operations. 

For this test scenario, each packet is submitted and waited 
on for its completion before moving on to the next packet.  

The performance results for sending single packets at a 
time are illustrated in Fig. 5. 



 

 

Fig. 5. Sending Single Packets Chart 

In Fig. 5 (and subsequent performance charts), the data 
rate (Gbit/s) is plotted in purple, and the CPU utilisation (%) 
is plotted in green. The left-vertical axis shows the data rate, 
and the right-vertical axis shows the CPU utilisation. The 
horizonal axis shows the packet length (KB), increasing from 
left to right. For each test case, the results for each iteration 
are drawn as points, and the lines are drawn through the 
average of those points. 

As shown in Fig. 5, when sending single packets, the CPU 
utilisation is initially high because, as described above, there 
is an overhead to submit each send operation and process its 
completion interrupt. As the packet length increases, the CPU 
utilisation reduces, and the data rate increases, because there 
are fewer, larger packets being sent every second. 

When the packet length reaches 256 KB, the data rate 
achieved is over 20 Gbit/s, and the CPU utilisation is 
approximately 2.5%. The intention of this scenario is to 
demonstrate that high performance can be achieved even with 
the simplest approach. 

The performance results for sending single packets at a 
time are listed in Table I, with the average values across all 
iterations, followed by the worst-case in parentheses. 

TABLE I.  SENDING SINGLE PACKETS TABLE 

Test Case Data Rate (Gbit/s) CPU Utilisation (%) 

1 KB 1.57 (1.57) 25.06 (25.10) 

2 KB 3.16 (3.16) 25.09 (25.10) 

4 KB 4.87 (4.86) 24.86 (24.99) 

8 KB 5.70 (5.70) 15.68 (16.06) 

16 KB 8.13 (8.08) 13.80 (14.27) 

32 KB 13.14 (13.12) 11.48 (12.35) 

64 KB 17.07 (17.05) 7.09 (7.51) 

128 KB 19.55 (19.54) 4.70 (5.15) 

256 KB 21.09 (21.09) 2.49 (2.78) 

2) Sending Multiple Packets 

To increase the data rate and reduce the CPU utilisation 
when sending packets, the per-packet overhead needs to be 
reduced. This can be done simply by grouping multiple 
packets together into single operations. Doing this coalesces 
the completion interrupts together and changes the per-packet 
overhead to a per-group overhead, meaning there is one send 
operation submission for a group of packets, and one interrupt 
signalling their completion. 

For this test scenario, the group size is set to either 128 or 
the maximum number of packets that fit within a 1 MB buffer 
e.g., 8 KB x 128, 16 KB x 64, and so on. Each group of packets 
is submitted and waited on for its completion before moving 
on to the next group. 

The performance results for sending multiple packets at a 
time are illustrated in Fig. 6. 



 

 

Fig. 6. Sending Multiple Packets Chart 

As shown in Fig. 6, the data rate and CPU utilisation 
results starting at 1 KB packets are significantly better than the 
results in Fig. 5, because the packets are being sent in groups 
of 128 at a time. This trend continues until the data rate 
saturates at just over 22 Gbit/s with a CPU utilisation of less 
than 1%. 

The performance results for sending multiple packets at a 
time are listed in Table II, with the average values across all 
iterations, followed by the worst-case in parentheses. 

TABLE II.  SENDING SINGLE PACKETS TABLE 

Test Case Data Rate (Gbit/s) CPU Utilisation (%) 

1 KB x 128 13.83 (13.73) 4.94 (5.06) 

2 KB x 128 19.19 (19.19) 3.79 (4.10) 

4 KB x 128 21.19 (21.19) 2.15 (2.33) 

8 KB x 128 22.01 (22.01) 0.51 (0.61) 

16 KB x 64 22.22 (22.21) 0.71 (0.81) 

32 KB x 32 22.31 (22.31) 0.73 (0.80) 

64 KB x 16 22.36 (22.36) 0.56 (0.68) 

128 KB x 8 22.39 (22.39) 0.79 (0.88) 

256 KB x 4 22.41 (22.40) 0.68 (0.75) 

3) Receiving Single Packets 

When receiving packets with the SpaceFibre Processor 
Endpoint, similar to sending packets, there is no per-byte copy 
overhead for the packet data, as data is written by the 
SpaceFibre Processor Endpoint directly to user-space 
memory. The overhead depends on the incoming traffic 
pattern, as the receiving software will either consume 
immediately available data, or it will block waiting for an 
interrupt signalling that there is new data available. 

For this test scenario, the completion for each packet is 
processed one at a time before moving on to the next packet. 

The performance results for receiving single packets at a 
time are illustrated in Fig. 7. 



  

 

Fig. 7. Receiving Single Packets Chart 

As shown in Fig. 7, when receiving single packets, the 
CPU utilisation is initially high because, similar to sending 
single packets, there is an overhead to process and clear a 
completion for each received packet. As the packet length 
increases, the CPU utilisation reduces, and the data rate 
increases, because there are fewer, larger packets being 
received every second. 

Similar to sending single packets at a time, the intention of 
this scenario is to demonstrate that high performance can be 
achieved even with the simplest approach. 

The performance results for receiving single packets at a 
time are listed in Table III, with the average values across all 
iterations, followed by the worst-case in parentheses. 

TABLE III.  RECEIVING SINGLE PACKETS TABLE 

Test Case Data Rate (Gbit/s) CPU Utilisation (%) 

1 KB 2.20 (2.19) 22.82 (22.90) 

2 KB 4.40 (4.40) 22.82 (22.86) 

4 KB 8.80 (8.79) 22.81 (22.83) 

8 KB 14.77 (14.76) 22.79 (22.83) 

16 KB 17.04 (17.03) 18.89 (19.23) 

32 KB 18.47 (18.46) 13.95 (14.30) 

64 KB 19.27 (19.26) 7.72 (7.88) 

128 KB 19.69 (19.69) 3.85 (3.95) 

256 KB 19.92 (19.91) 1.94 (2.02) 

4) Receiving Multiple Packets 

To increase the data rate and reduce the CPU utilisation 
when receiving packets, the completion processing overhead 
needs to be reduced. This is not as simple as the send side, 
where packets can be queued and dispatched in groups of N 

packets, because in a typical application a receiver does not 
know exactly when or how many packets will arrive so it 
cannot wait for a fixed number of packets to be received 
before processing them. 

An alternative approach is to wait until the buffers reach a 
fill threshold, or a timeout occurs, before handling multiple 
completions at a time. There is a trade-off between reducing 
latency by processing data as soon as it arrives vs reducing 
overhead by delaying the processing of data. The SpaceFibre 
Processor Endpoint software supports multiple polling and 
blocking options when waiting for operations to complete. For 
example, the status of an operation can be checked via polling, 
waited on indefinitely, or waited on with a configurable 
timeout. This allows a receiver to be tuned appropriately for 
an application’s traffic patterns and requirements. 

The performance results for receiving multiple packets, 
using the threshold filling approach, are illustrated in Fig. 8. 



  

 

Fig. 8. Receiving Multiple Packets Chart 

As shown in Fig. 8, the data rate and CPU utilisation 
results starting at 1 KB packets are significantly better than 
the results in Fig. 7. The CPU utilisation continues to be 
lower as the packet size increases, until the data rate 
saturates at approximately 20 Gbit/s. 

In this scenario, the threshold was set to 25% and the 
timeout was set to 100 µs, meaning that a receive operation 
would wait until either the buffer was 25% full or a 100 µs 
timeout had passed after a newly received packet before 
handling the current set of receive completions. 

The performance results for receiving multiple packets, 
using the threshold filling approach, are listed in Table IV, 
with the average values across all iterations, followed by the 
worst-case in parentheses. 

TABLE IV.  RECEIVING MULTIPLE PACKETS TABLE 

Test Case Data Rate (Gbit/s) CPU Utilisation (%) 

1 KB 11.96 (11.96) 3.81 (4.92) 

2 KB 13.49 (13.48) 2.98 (3.16) 

4 KB 13.61 (13.61) 2.72 (2.92) 

8 KB 15.42 (15.42) 1.83 (1.95) 

16 KB 17.49 (17.48) 1.72 (2.02) 

32 KB 18.76 (18.75) 1.56 (1.70) 

64 KB 19.46 (19.46) 1.59 (1.72) 

128 KB 19.83 (19.82) 1.84 (2.01) 

256 KB 20.02 (20.02) 1.27 (1.54) 

V. FUTURE WORK 

In a recent radiation test, an experimental SpaceFibre 
link was demonstrated running at 100 Gbit/s in an AMD 
Versal SoC. To support these extremely high link rates 

effectively and efficiently in software-based systems, 
testing of the SpaceFibre Processor Endpoint will be 
conducted in the near future with AMD Versal SoC devices 
at a link rate of 100 Gbit/s. 

VI. CONCLUSIONS 

The SpaceFibre Processor Endpoint has been developed 
to provide a rapid and simple way to integrate one or more 
SpaceFibre interfaces into an on-board processing system, 
such as a SoC, with full software support designed to 
provide maximum performance with minimal processor 
overhead. 

The SpaceFibre Processor Endpoint consists of an IP 
core, Linux drivers, and supporting software, providing a 
hardware-accelerated interface between user-space 
software applications and a SpaceFibre network. By 
significantly reducing the work that the processor has to 
perform to send and receive user data, it provides maximum 
performance with minimal processor overhead. 

The performance results presented in this paper included 
the data rate and CPU utilisation figures for various sending 
and receiving scenarios for packets of increasing sizes. The 
results demonstrated that high performance can be achieved 
even with the simplest use of the software, and performance 
can then be significantly improved using straightforward 
optimisations. 
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