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Abstract— Spacecraft data-handling systems continue to 

demand ever-increasing performance. The use of Commercial 

Off-The-Shelf (COTS) devices, screened for space applications, 

is increasingly common, because of the performance and cost 

advantages they offer. 

SpaceFibre is the next generation of the widely used 

SpaceWire network technology. SpaceFibre provides multi-

Gbit/s on-board networking over both copper and fibre optic 

cables. SpaceFibre’s built-in quality of service (QoS) and fault 

detection, isolation, and recovery (FDIR) capabilities deliver 

high reliability and availability which are critical for spacecraft 

operations. SpaceFibre was specifically developed for space 

applications, providing the capabilities needed for space 

systems. COTS processors do not support SpaceFibre but do 

generally have PCIe and Ethernet interfaces, which could be 

used to connect to SpaceFibre. 

This paper describes how SpaceWire and SpaceFibre 

networks can be used with both COTS and radiation-tolerant 

SoC devices, including the use of a TCP/IP stack. It further 

demonstrates how commercial hardware and standard software 

network stacks can be combined with the enhanced capabilities 

of SpaceFibre technology, including Quality of Service (QoS), 

link reliability and multi-lane redundancy.  
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I. INTRODUCTION 

Spacecraft data-handling systems continue to demand 
ever-increasing performance. The use of Commercial                     
Off-The-Shelf (COTS) devices, screened for space 
applications, is increasingly common, offering the higher 
performance of the latest commercial processors. In parallel 
with this, differing approaches to risk have also been 
developed, spurred on by CubeSat developers. Spacecraft-
level redundancy,                      single-string, unit level 
redundancy and redundancy inside a unit, are all available to 
help balance cost of development/deployment against 
risk/mission-life. Space Enhanced Plastic (SEP) components 
have been developed in response to the use of COTS, to enable 
a better balance between reliability, cost and performance. 
Very high performance FPGAs like the Versal have been 
developed for space applications to support demanding 
processing and data-handling requirements. However, the 
drive to use COTS for space applications remains strong 
because of the performance and cost advantages they offer. 

Reliable and efficient real-time performance remains 
paramount in space. Traditional Ethernet does not inherently 
guarantee deterministic latency or robust fault-tolerance; it 
typically depends on additional layers (e.g., TCP, additional 
redundancy mechanisms) to manage errors and congestion. 
Many COTS devices (e.g., computers running Linux) rely on 
the familiar TCP/IP stack and do not implement SpaceFibre 
links [1]. 

By creating a bridge between Ethernet (commonly used by 
COTS devices) and SpaceFibre (readily adopted by space-
qualified FPGA designs), engineers can deploy a single, 
integrated network with minimal duplication of cables or 
protocol infrastructure. 

Previous work has focused on encapsulating transport 
protocols over SpaceWire [2] and SpaceFibre [3]. Instead of 
encapsulating IP packets via an IP gateway, the proposed 
solution encapsulates complete Ethernet frames within 
SpaceFibre packets (and vice versa), with IP packets, when 
present, remaining inside the Ethernet payload. This approach 
supports use cases that do not rely on the IP protocol and 
makes the implementation simpler and more efficient, since 
no IP layer processing is required and the entire forwarding 
path can be easily implemented in hardware to sustain very 
high data rates. A similar approach is used by Ethernet over 
InfiniBand (EoIB) [4].  

In this paper, we present a practical implementation of this 
concept, bridging Ethernet and SpaceFibre directly at data link 
layer to support both raw Ethernet applications and the TCP/IP 
stack of COTS and radiation-tolerant SoC devices. At the 
software level, one or more virtual network interfaces expose 
SpaceFibre and Ethernet endpoints to the operating system 
standard TCP/IP stack as an IP network organized into two 
subnets: one dedicated to native SpaceWire/SpaceFibre traffic 
(e.g., RMAP) and another to standard IP traffic (e.g., TCP). 

Either subnet may span SpaceFibre and Ethernet links, as 
is the case with Wi-Fi/Ethernet bridging [5]. However, 
broadcast is intentionally unsupported for simplicity and 
robustness; SpaceFibre excludes packet broadcasts to prevent 
broadcast storms in redundant topologies, so IP addressing is 
configured statically, and the bridging logic behaves as a 
constrained Layer-2 gateway rather than a transparent                 
Layer-2 bridge. 

When Ethernet endpoints are present, this software 
abstraction is complemented by hardware support, using a 
SpaceFibre Routing Switch extended with Ethernet ports and 
bridging logic, as described in the next section. 

II. SPACEFIBRE ROUTING SWITCH WITH ETHERNET PORTS  

The STAR-Dundee SpaceFibre Routing Switch [6], 
enhanced with Ethernet ports (SpFi Router), serves as the 
hardware backbone of the proposed unified network. The 
Ethernet ports bridge Ethernet and SpaceFibre networks, 
providing effective tunnelling of Ethernet frames over 
SpaceFibre, and vice versa, at the data link (Layer-2) level.  

The requirements for this bridging logic can be derived 
from the analysis of data flows among COTS processors, SoC 
FPGAs, and standalone FPGAs. A simple topology is shown 
in Figure 1. To support these data flows, the Ethernet ports of 
the SpFi Router must be capable of supporting two distinct 
classes of packet payloads: conventional IP-based Ethernet 
traffic and native SpaceFibre traffic. 



 

Fig. 1. SpaceFibre Routing Switch with Ethernet ports 

A. Supported Packet Payloads 

As stated, the unified network must transparently transport 
both Ethernet frames carrying IP packets, and SpaceFibre 
packets carrying native protocols such as RMAP or raw 
payload data.  

1) IP-based traffic 
In our solution, Ethernet frames are always used to carry 

IP packets with TCP/UDP or other transport protocols. The 
corresponding data flows in Figure 1 are: 

a) From COTS processor to the SoC FPGA: 

The Ethernet frames from the COTS processor are 
encapsulated into SpFi packets by the Ethernet port of 
the SpFi Router. At the destination, the SoC FPGA 
decapsulates them into Ethernet frames, which are 
then processed by the standard OS network stack. 

b) From SoC FPGA to COTS Processor: 

The network interface of the SoC FPGA sends 
SpaceFibre packets containing Ethernet frames. The 
SpFi packets are routed to the Ethernet port, which 
decapsulates the Ethernet frames, so they can be 
forwarded to the COTS Processor. 

2) Native SpaceFibre traffic 
SpaceFibre packets are used for raw data or other 

protocols, such as RMAP packets, which can be processed by 
hardware: 

c) From COTS processor to standalone FPGA: 

The network interface of the COTS Processor 
encapsulates the SpFi packets into Ethernet frames, 
which are then decapsulated by the Ethernet port and 
routed to the destination FPGA. 

d) From standalone FPGA to COTS processor: 

The SpaceFibre packets arrive at the Ethernet port, 
which encapsulates them into Ethernet frames. The 
network interface of the COTS processor obtains the 
application data, e.g., RMAP read reply, from the 
encapsulated SpFi packets. 

e) From SoC FPGA to standalone FPGA and vice versa: 

SpaceFibre packets are not encapsulated and follow 
standard SpaceFibre addressing, but the user 
application within the SoC FPGA can access the SpFi 
network using standard IP addressing with UDP 
sockets.  

The following sections describe the functionality 
implemented in the Ethernet ports in order to support these 
data flows. 

B. Ethernet-to-SpaceFibre  

When an Ethernet frame arrives at an Ethernet port of the 
SpFi Router, the Ethertype field is inspected. If it denotes a 
SpaceWire/SpaceFibre fragment, this frame and any related 
frames with more fragments are reassembled into a complete 
SpFi packet, including SpFi addressing. Otherwise, the full 
frame is encapsulated in a SpFi packet (Figure 2). The 
Ethernet PCP field of the VLAN tag is translated into a 
SpaceFibre Virtual Channel number (VC), which is then 
mapped to a Virtual Network (VN) depending on the SpFi 
Router configuration. This provides SpaceFibre QoS to 
Ethernet frames. 

Fig. 2. Ethernet to SpaceFibre bridging depends on EtherType. 

C. SpaceFibre-to-Ethernet  

Conversely, when a SpFi packet is routed to an Ethernet 
port, the SpFi Protocol ID field is inspected. If it indicates an 
Ethernet frame, the Ethernet frame is extracted. Otherwise, the 
SpFi packet is encapsulated within one or multiple Ethernet 
frames with the Ethertype field indicating they contain a SpFi 
packet fragment (Figure 3). 

 

Fig. 3. SpaceFibre to Ethernet bridging depends on SpFi protocol ID. 

Table 1 describes the fields of a SpFi packet fragment in 
least-significant-byte-first order. The “Start Flags” and the 
“Sequence” fields detect if an Ethernet frame was lost, 
providing data integrity by truncating an outgoing SpFi packet 
with an EEP. The “Length” field is used only when padding is 
required due to the payload length being smaller than the 
minimum Ethernet frame, after accounting for header bytes. 

TABLE I.  SPFI PACKET FRAGMENT FIELDS  

Field Bits  Description 

Start Flags 8 Bit 0 is set if it is the first fragment. 

Length 8 
Payload data length when padding 
is used, otherwise set to zero. 

Sequence 32 
Sequence number incremented for 

every fragment sent. 

Payload variable SpW/SpFi packet data 

End Flags 8 
Bit 0 set if fragment ends with EOP 

Bit 1 set if fragment ends with EEP 
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D. MAC Address translation 

The SpFi Router translates destination MAC address to 
destination SpFi logical address (LA) and vice versa, either 
through direct mapping between a MAC address byte to the 
SpFi address byte or via a configurable look up table.  

Since MAC values can be configured in most systems, we 
adopted the former approach for simplicity, using the format 
“02:00:XX:XX:LA”. The first byte “0x2” enforces unicast 

traffic and sets the locally administered (private) bit, ensuring 
no collision with globally assigned MAC addresses. The last 
byte corresponds to the SpaceWire logical address. The “XX” 

fields are don’t care values. For source MAC addresses, the 
second byte is always zero, but for destination MAC addresses 
it may be assigned to identify a specific Ethernet port when 
multiple ports are connected to the same switch. This byte is 
cleared by the Ethernet port during frame forwarding. 

For the encapsulation of SpFi packets into Ethernet 
frames, the source MAC address is obtained from a 
configurable value assigned to a specific SpFi Router Ethernet 
port. The system’s network management can statically or 
dynamically configure these mappings.  

E. Network Topology 

For the deployment of typical space applications requiring 
redundant paths, the Ethernet ports of the SpFi Router should 
be connected only to endpoints and not to Ethernet switches. 
Ethernet networks are susceptible to broadcast storms unless 
complex managed switches implement additional control 
protocols. In contrast, SpaceFibre uses broadcast messages 
with a built-in mechanism that prevents broadcast storms. 
SpaceFibre does not allow packet broadcast, and its use of 
static routing tables inherently prevents packets from looping 
indefinitely. 

As the on-board network topology is typically 
predetermined, ARP and similar protocols are not 
implemented in the SpFi Router’s Ethernet ports, reducing 
complexity. Instead, the software network interface can either 
load a preconfigured IP and MAC address setup information 
or discover the network using configuration data from the 
SpFi Router configuration port zero. 

F. Implementation Results 

The previous bridging rules between Ethernet and 
SpaceFibre were designed to minimize implementation 
complexity while maximizing performance. Table 2 presents 
the resource usage of the Ethernet port bridging logic 
implemented on a radiation-tolerant PolarFire FPGA 
(RTPF500ZT) without including an Ethernet MAC IP. This 
implementation supports all previously described features, 
including fragmentation and reassembly of SpaceFibre 
fragments. The achieved maximum operating frequency of 
200 MHz enables support lane rates exceeding 6.25 Gbps.  

TABLE II.  RESOURCE USAGE OF ETHERNET PORT BRIDGING LOGIC 

 DFF  LUT RAM 

RTPF500ZT 
789 

0.17% 
2845 
0.57% 

6 

0.4% 

 

Figure 4 shows the hardware setup used to verify that no 
bottlenecks are present in the implemented bridging logic. The 
Ethernet MAC IP used by the Ethernet port of the SpFi Router 
was replaced with a loopback logic. A STAR-Dundee               

STAR-Ultra Interface PCIe EGSE unit was used to send SpFi 
packets containing either Ethernet frames or raw data.  

 

Fig. 4. Hardware setup of the performance test. 

Figure 5 shows the data rate achieved when the                      
STAR-Ultra is sending raw data using 3 KB packets with a 
single-lane SpFi interface. The measured throughput of 4.4 
Gbps is very close to the theoretical maximum of 4.77 Gbps 
for a 6.25 Gbps lane rate after accounting for SpFi encoding 
and protocol overhead. In this configuration, the Ethernet port 
is generating Ethernet frames containing SpFi packets and 
then decapsulating them back into SpFi packets. 

 

Fig. 5. Performance test results at 6.25 Gbps SpFi lane rate. 

When transmitting SpFi packets carrying Ethernet frames, 
the measured data rates remain nearly identical. In this case, 
the Ethernet port first decapsulates the frames and 
subsequently re-encapsulates them into SpFi packets. 

III. VIRTUAL NETWORK INTERFACES 

For SoC-based endpoints, commercial processors, or other 
software-driven systems connected via SpaceFibre or 
Ethernet, we implemented virtual network interfaces that 
allow user applications to exchange both IP-based traffic and 
native SpaceFibre packets through standard TCP/UDP 
sockets. From the application’s perspective, communication 
occurs over a standard IP network, while the virtual network 
interface directs the traffic onto Ethernet or SpaceFibre 
packets. This allows existing applications to use standard 
networking APIs without modification. 

A virtual network interface is a software construct that sits 
directly beneath the operating system’s (OS) networking 
stack. Each virtual interface is configured with an IP address 
(or subnet) and a maximum transmission unit (MTU). The 
MTU defines the maximum packet size supported by the 
interface; if a packet exceeds this value, the kernel 
automatically fragments it before transmission. Likewise, 
fragmented packets are reassembled by the OS networking 
stack before delivery to the application, ensuring transparency 
for higher-layer protocols and applications.  

When an application opens a TCP or UDP socket, the OS 
stack generates the corresponding IP packets and forwards 
them to the appropriate virtual interface, depending on the 
source and destination IP address of the socket configuration. 
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The interface encapsulates these IP packets into link-layer 
packets and transmits them across either Ethernet or 
SpaceFibre links. In the reverse direction, received packets are 
decapsulated, reconstructed as IP packets, and injected back 
into the OS stack.  

A virtual network interface can be realized through 
different mechanisms, ranging from user-space interfaces 
(e.g. TUN interface) to fully integrated kernel-level drivers, 
depending on performance and deployment requirements. 

Figure 6 shows the network stack supporting the proposed 
unified network architecture. Applications operate over 
distinct IP subnets depending on whether they generate 
standard IP traffic or native SpFi traffic, which are managed 
by different types of network interfaces. Also, the virtual 
network interface is configured to either use a SpFi or Ethernet 
hardware device driver. To support SpFi QoS, a dedicated 
virtual network interface can be assigned to each VC, or for 
Ethernet links, to the equivalent PCP field.  

   

Fig. 6. Unified Network Stack 

Under the hood, these network interfaces implement 
among other functions: 

• The address translation, so that IP addresses map 

correctly to MAC or SpFi logical addresses, based on 

direct translation, static configuration or dynamically 

using network discovery algorithms. Different subnets 

can be used for each SpFi virtual network. For simplicity, 

an IP address can also contain the actual SpFi destination 

logical address being used. 

• For outgoing standard IP traffic, the network interface 

first encapsulates the IP packets within Ethernet frames. 

In case of a SpFi link, these frames are then encapsulated 

into SpFi packets. IP traffic is always encapsulated in an 

Ethernet frame even when there are no Ethernet links 

involved. This allows the source of IP packets to be 

agnostic of the destination using SpFi links or Ethernet. 

• For incoming standard IP traffic, a standard Ethernet 

network interface is used for Ethernet links. For SpFi 

links, a custom network interface extracts the IP packet 

from the Ethernet frame encapsulated within the SpFi 

packet received. 

• For outgoing native SpFi traffic, applications use the 

UDP protocol to send a complete SpFi packet. The 

network interface extracts the SpFi packet from the UDP 

payload within the IP packet. For Ethernet links, the SpFi 

packet is then encapsulated into an Ethernet frame. 

• For incoming native SpFi traffic, the SpFi packet is 

received either directly over a SpFi link or from an 

Ethernet frame over an Ethernet link. The packet is then 

encapsulated into a UDP datagram within an IP packet 

and delivered to the OS networking stack. 

This layered architecture integrates all endpoints, 
including COTS sensors, SoC-based processors, and FPGA-
only instruments, into a unified network, allowing each device 
to operate seamlessly with either standard IP protocols or SpFi 
protocols tailored for space applications. 

IV. EVALUATION  

To implement and evaluate the overall solution, the 
network depicted in Figure 1 was built using the following 
hardware: a PC equipped with an Ethernet card emulates the 
COTS processor; another PC with a STAR-Dundee STAR-
Ultra SpFi interface emulates the SoC FPGA; and a VCK190 
Evaluation Kit with a Versal FPGA [7] implements the 
upgraded STAR-Dundee SpFi Router IP with an Ethernet 
port. The standalone FPGA shown in Figure 1 is expected to 
handle native SpFi protocols, for example, a mass-memory 
unit processing RMAP commands in hardware. For 
simplicity, this use case is evaluated by just reading the 
routing table of the SpFi Router using RMAP read commands. 

A. TUN interfaces 

The virtual network interfaces are implemented as TUN 
interfaces. There is a TUN interface per VC for SpFi endpoints 
and one per PCP value for Ethernet endpoints. The OS 
provides a TUN kernel driver that exposes IP packets from the 
network stack through read and write file descriptors. The 
functionality of each virtual network interface is implemented 
in a user-space process that accesses these file descriptors. 
This approach greatly simplifies the implementation, although 
it may not achieve the performance of a kernel-space network 
driver [8]. 

B. IP Address translation 

In this implementation, a direct translation is used between 
IP, MAC and SpFi logical addresses, using IP addresses with 
the following format: 

IP traffic: 10.100.<VN>.<LA> 

SpFi traffic: 10.100.<VN+128>.<LA> 

Where <VN> is the SpFi virtual network number (VN) and 

<LA> is the SpFi destination logical address. For SpFi traffic 

using path addressing, <LA> is set to zero.  

Each endpoint in the unified network is assigned a unique 
SpFi LA, even for endpoints connected through Ethernet 
links. This LA serves as a common identifier across all 
network layers. It is embedded in the MAC address of 
Ethernet endpoints (using the format defined in Section II-D) 
and, together with the VN, determines the IP address assigned 
to the TUN interface of each virtual channel or PCP.  
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C.   Example Results 

Figure 7 shows a screenshot of the STAR-Ultra Link 
Analyser capturing an IP packet received from a SpFi link. 
The IP packet was generated by an endpoint with a standard 
Ethernet interface and was encapsulated within a SpFi packet 
by the Ethernet port of the SpFi Router. The packet begins 
with SpFi LA value 0x29, followed by the SpFi protocol ID 
byte indicating that the SpFi packet contains an Ethernet frame 
(value 0xEE is used in our implementation). After the Ethernet 
and IP headers, the actual IP payload is highlighted. 

 

 

Fig. 7. IP packet received by a SpFi link 

We have previously described how virtual network 
interfaces enable the use of UDP to send native SpFi traffic 
via either SpFi or Ethernet links. Figure 8 shows a simple 
Python script that sends a UDP packet with an RMAP read 
command. The SpFi path address is included in the UDP 
payload, so the destination IP address is used only to select the 
interface corresponding to the specified VN. 

 

Fig. 8. Python script to send an RMAP packet using UDP 

Figure 9 shows a screenshot of the Wireshark software 
with a UDP packet received over an Ethernet link, containing 
the corresponding reply packet from the SpFi Router 
configuration port. The data field begins with the protocol ID 
byte 0x1, indicating an RMAP packet. The RMAP command 
reads a 32-bit register with the ASCII value “SpFi”, as shown 
in the highlighted RMAP data field.  

 

Fig. 9. UDP packet with RMAP reply data 

Finally, Figure 10 shows a file transfer between two 
endpoints, across a network with both SpFi and Ethernet links. 
A standard FTP application is used, highlighting the 
advantages of integrating the standard OS network stack into 
SpFi networks. 

 

Fig. 10. FTP file transfer across SpFi and Ethernet links 

D.   Future work 

The evaluation was performed using Gigabit Ethernet 
MACs and TUN virtual interfaces. However, the Ethernet port 
of the SpFi Router supports much higher speeds, and the MAC 
is currently being upgraded to 10 GbE. Future work will focus 
on the development of kernel-space network drivers to 
achieve maximum throughput and lower latency, building on 
our previous work on high-performance driver architectures 
[9]. 

V. CONCLUSIONS 

In contrast to Ethernet related protocols such as TSN and 
TCP, SpaceFibre links can operate without software 
intervention, are not constrained by a maximum packet length 
and provide a reliable link that transparently mitigates                 
single-event effects produced by radiation events [10]. The 
flexibility of the SpaceFibre packet format and the robustness 
of its broadcast mechanism enable custom redundancy 
mechanisms and precise time distribution without the risk of 
broadcast storms that can occur in Ethernet networks [11,12]. 
The proposed solution allows SpaceFibre technology to 
integrate COTS devices with Ethernet interfaces and leverage 
the standard TCP/IP stack to deliver even more capabilities. 
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