Effective, Robust TCP/IP over SpaceFibre

Albert Ferrer Florit
STAR-Barcelona S.L.
Barcelona, Spain
albert.ferrer@star-dundee.com

Abstract— Spacecraft data-handling systems continue to
demand ever-increasing performance. The use of Commercial
Off-The-Shelf (COTS) devices, screened for space applications,
is increasingly common, because of the performance and cost
advantages they offer.

SpaceFibre is the next generation of the widely used
SpaceWire network technology. SpaceFibre provides multi-
Gbit/s on-board networking over both copper and fibre optic
cables. SpaceFibre’s built-in quality of service (QoS) and fault
detection, isolation, and recovery (FDIR) capabilities deliver
high reliability and availability which are critical for spacecraft
operations. SpaceFibre was specifically developed for space
applications, providing the capabilities needed for space
systems. COTS processors do not support SpaceFibre but do
generally have PCle and Ethernet interfaces, which could be
used to connect to SpaceFibre.

This paper describes how SpaceWire and SpaceFibre
networks can be used with both COTS and radiation-tolerant
SoC devices, including the use of a TCP/IP stack. It further
demonstrates how commercial hardware and standard software
network stacks can be combined with the enhanced capabilities
of SpaceFibre technology, including Quality of Service (QoS),
link reliability and multi-lane redundancy.

Keywords— SpaceFibre, On-board Networking, On-board
Data Handling, Ethernet, TCP/IP, SpaceWire, Software Device
Driver, System-on-Chips, Embedded Systems

I. INTRODUCTION

Spacecraft data-handling systems continue to demand
ever-increasing performance. The use of Commercial
Off-The-Shelf (COTS) devices, screened for space
applications, is increasingly common, offering the higher
performance of the latest commercial processors. In parallel
with this, differing approaches to risk have also been
developed, spurred on by CubeSat developers. Spacecraft-
level redundancy, single-string, unit level
redundancy and redundancy inside a unit, are all available to
help balance cost of development/deployment against
risk/mission-life. Space Enhanced Plastic (SEP) components
have been developed in response to the use of COTS, to enable
a better balance between reliability, cost and performance.
Very high performance FPGAs like the Versal have been
developed for space applications to support demanding
processing and data-handling requirements. However, the
drive to use COTS for space applications remains strong
because of the performance and cost advantages they offer.

Reliable and efficient real-time performance remains
paramount in space. Traditional Ethernet does not inherently
guarantee deterministic latency or robust fault-tolerance; it
typically depends on additional layers (e.g., TCP, additional
redundancy mechanisms) to manage errors and congestion.
Many COTS devices (e.g., computers running Linux) rely on
the familiar TCP/IP stack and do not implement SpaceFibre
links [1].

Marti Farras Casas
STAR-Barcelona S.L.
Barcelona, Spain
marti.farras@star-dundee.com

Steve Parkes
STAR-Dundee Ltd.
Dundee, Scotland, UK
steve.parkes@star-dundee.com

By creating a bridge between Ethernet (commonly used by
COTS devices) and SpaceFibre (readily adopted by space-
qualified FPGA designs), engineers can deploy a single,
integrated network with minimal duplication of cables or
protocol infrastructure.

Previous work has focused on encapsulating transport
protocols over SpaceWire [2] and SpaceFibre [3]. Instead of
encapsulating IP packets via an IP gateway, the proposed
solution encapsulates complete Ethernet frames within
SpaceFibre packets (and vice versa), with IP packets, when
present, remaining inside the Ethernet payload. This approach
supports use cases that do not rely on the IP protocol and
makes the implementation simpler and more efficient, since
no IP layer processing is required and the entire forwarding
path can be easily implemented in hardware to sustain very
high data rates. A similar approach is used by Ethernet over
InfiniBand (EoIB) [4].

In this paper, we present a practical implementation of this
concept, bridging Ethernet and SpaceFibre directly at data link
layer to support both raw Ethernet applications and the TCP/IP
stack of COTS and radiation-tolerant SoC devices. At the
software level, one or more virtual network interfaces expose
SpaceFibre and Ethernet endpoints to the operating system
standard TCP/IP stack as an IP network organized into two
subnets: one dedicated to native SpaceWire/SpaceFibre traffic
(e.g., RMAP) and another to standard IP traffic (e.g., TCP).

Either subnet may span SpaceFibre and Ethernet links, as
is the case with Wi-Fi/Ethernet bridging [5]. However,
broadcast is intentionally unsupported for simplicity and
robustness; SpaceFibre excludes packet broadcasts to prevent
broadcast storms in redundant topologies, so IP addressing is
configured statically, and the bridging logic behaves as a
constrained Layer-2 gateway rather than a transparent
Layer-2 bridge.

When Ethernet endpoints are present, this software
abstraction is complemented by hardware support, using a
SpaceFibre Routing Switch extended with Ethernet ports and
bridging logic, as described in the next section.

II. SPACEFIBRE ROUTING SWITCH WITH ETHERNET PORTS

The STAR-Dundee SpaceFibre Routing Switch [6],
enhanced with Ethernet ports (SpFi Router), serves as the
hardware backbone of the proposed unified network. The
Ethernet ports bridge Ethernet and SpaceFibre networks,
providing effective tunnelling of Ethernet frames over
SpaceFibre, and vice versa, at the data link (Layer-2) level.

The requirements for this bridging logic can be derived
from the analysis of data flows among COTS processors, SoC
FPGAs, and standalone FPGAs. A simple topology is shown
in Figure 1. To support these data flows, the Ethernet ports of
the SpFi Router must be capable of supporting two distinct
classes of packet payloads: conventional IP-based Ethernet
traffic and native SpaceFibre traffic.



SoC
FPGA
SpFi/ SpW
COTS Eth — Standalone
Processor :l 3<— |: SpFi/ FPGA
SpW

SpFi Router

Fig. 1. SpaceFibre Routing Switch with Ethernet ports

A. Supported Packet Payloads

As stated, the unified network must transparently transport
both Ethernet frames carrying IP packets, and SpaceFibre
packets carrying native protocols such as RMAP or raw
payload data.

1) IP-based traffic

In our solution, Ethernet frames are always used to carry
IP packets with TCP/UDP or other transport protocols. The
corresponding data flows in Figure 1 are:

a) From COTS processor to the SoC FPGA:

The Ethernet frames from the COTS processor are
encapsulated into SpFi packets by the Ethernet port of
the SpFi Router. At the destination, the SoC FPGA
decapsulates them into Ethernet frames, which are
then processed by the standard OS network stack.

b) From SoC FPGA to COTS Processor:

The network interface of the SoC FPGA sends
SpaceFibre packets containing Ethernet frames. The
SpFi packets are routed to the Ethernet port, which
decapsulates the Ethernet frames, so they can be
forwarded to the COTS Processor.

2) Native SpaceFibre traffic

SpaceFibre packets are used for raw data or other
protocols, such as RMAP packets, which can be processed by
hardware:

¢) From COTS processor to standalone FPGA:

The network interface of the COTS Processor
encapsulates the SpFi packets into Ethernet frames,
which are then decapsulated by the Ethernet port and
routed to the destination FPGA.

d) From standalone FPGA to COTS processor:

The SpaceFibre packets arrive at the Ethernet port,
which encapsulates them into Ethernet frames. The
network interface of the COTS processor obtains the
application data, e.g., RMAP read reply, from the
encapsulated SpFi packets.

e) From SoC FPGA to standalone FPGA and vice versa:

SpaceFibre packets are not encapsulated and follow
standard SpaceFibre addressing, but the user
application within the SoC FPGA can access the SpFi
network using standard IP addressing with UDP
sockets.

The following sections describe the functionality
implemented in the Ethernet ports in order to support these
data flows.

B. Ethernet-to-SpaceFibre

When an Ethernet frame arrives at an Ethernet port of the
SpFi Router, the Ethertype field is inspected. If it denotes a
SpaceWire/SpaceFibre fragment, this frame and any related
frames with more fragments are reassembled into a complete
SpFi packet, including SpFi addressing. Otherwise, the full
frame is encapsulated in a SpFi packet (Figure 2). The
Ethernet PCP field of the VLAN tag is translated into a
SpaceFibre Virtual Channel number (VC), which is then
mapped to a Virtual Network (VN) depending on the SpFi
Router configuration. This provides SpaceFibre QoS to
Ethernet frames.

| MAC | VLAN | Etype = SpFi | SpFi Packet Fragment

E> SpFi Packet

| MAC | VLAN | Etype = SpFi | SpFi Packet Fragment

|MAC |Etype I= SpFi |PayLoad E> | SpFi AddrlPtr ID = Eth | Ethernet Frame

Fig. 2. Ethernet to SpaceFibre bridging depends on EtherType.

C. SpaceFibre-to-Ethernet

Conversely, when a SpFi packet is routed to an Ethernet
port, the SpFi Protocol ID field is inspected. If it indicates an
Ethernet frame, the Ethernet frame is extracted. Otherwise, the
SpFi packet is encapsulated within one or multiple Ethernet
frames with the Ethertype field indicating they contain a SpFi
packet fragment (Figure 3).

E> | Ethernet Frame

Cargo |

|SpF i Addr | Ptr ID = Eth | Ethernet Frame

|SpFi Addrl Ptr ID != Eth |

U

| MAC | VLAN | Etype = SpFi |

SpFi Packet Fragment |

| MAC | VLAN | Etype = SpFi | SpFi Packet Fragment |

Fig. 3. SpaceFibre to Ethernet bridging depends on SpFi protocol ID.

Table 1 describes the fields of a SpFi packet fragment in
least-significant-byte-first order. The “Start Flags” and the
“Sequence” fields detect if an Ethernet frame was lost,
providing data integrity by truncating an outgoing SpFi packet
with an EEP. The “Length” field is used only when padding is
required due to the payload length being smaller than the
minimum Ethernet frame, after accounting for header bytes.

TABLE L. SPFT PACKET FRAGMENT FIELDS
Field Bits Description
Start Flags 8 Bit 0 is set if it is the first fragment.
Length 3 Payload data le_ngth when padding
is used, otherwise set to zero.
Sequence number incremented for
Sequence 32
every fragment sent.
Payload variable | SpW/SpFi packet data
Bit 0 set if fragment ends with EOP
End Flags 8 Bit 1 set if fragment ends with EEP




D. MAC Address translation

The SpFi Router translates destination MAC address to
destination SpFi logical address (LA) and vice versa, either
through direct mapping between a MAC address byte to the
SpFi address byte or via a configurable look up table.

Since MAC values can be configured in most systems, we
adopted the former approach for simplicity, using the format
“02:00:XX:XX:LA”. The first byte “0x2” enforces unicast
traffic and sets the locally administered (private) bit, ensuring
no collision with globally assigned MAC addresses. The last
byte corresponds to the SpaceWire logical address. The “XX”
fields are don’t care values. For source MAC addresses, the
second byte is always zero, but for destination MAC addresses
it may be assigned to identify a specific Ethernet port when
multiple ports are connected to the same switch. This byte is
cleared by the Ethernet port during frame forwarding.

For the encapsulation of SpFi packets into Ethernet
frames, the source MAC address is obtained from a
configurable value assigned to a specific SpFi Router Ethernet
port. The system’s network management can statically or
dynamically configure these mappings.

E. Network Topology

For the deployment of typical space applications requiring
redundant paths, the Ethernet ports of the SpFi Router should
be connected only to endpoints and not to Ethernet switches.
Ethernet networks are susceptible to broadcast storms unless
complex managed switches implement additional control
protocols. In contrast, SpaceFibre uses broadcast messages
with a built-in mechanism that prevents broadcast storms.
SpaceFibre does not allow packet broadcast, and its use of
static routing tables inherently prevents packets from looping
indefinitely.

As the on-board network topology 1is typically
predetermined, ARP and similar protocols are not
implemented in the SpFi Router’s Ethernet ports, reducing
complexity. Instead, the software network interface can either
load a preconfigured IP and MAC address setup information
or discover the network using configuration data from the
SpFi Router configuration port zero.

F. Implementation Results

The previous bridging rules between Ethernet and
SpaceFibre were designed to minimize implementation
complexity while maximizing performance. Table 2 presents
the resource usage of the Ethernet port bridging logic
implemented on a radiation-tolerant PolarFire FPGA
(RTPF500ZT) without including an Ethernet MAC IP. This
implementation supports all previously described features,
including fragmentation and reassembly of SpaceFibre
fragments. The achieved maximum operating frequency of
200 MHz enables support lane rates exceeding 6.25 Gbps.

TABLE IL RESOURCE USAGE OF ETHERNET PORT BRIDGING LOGIC
DFF LUT RAM
789 2845 6

RTPFS00ZT

0.17% | 0.57% | 0.4%

Figure 4 shows the hardware setup used to verify that no
bottlenecks are present in the implemented bridging logic. The
Ethernet MAC IP used by the Ethernet port of the SpFi Router
was replaced with a loopback logic. A STAR-Dundee

STAR-Ultra Interface PCle EGSE unit was used to send SpFi
packets containing either Ethernet frames or raw data.

SpFi | gpFi X Eth
Port _ Port

SpFi Router

STAR-Ultra

Fig. 4. Hardware setup of the performance test.

Figure 5 shows the data rate achieved when the
STAR-Ultra is sending raw data using 3 KB packets with a
single-lane SpFi interface. The measured throughput of 4.4
Gbps is very close to the theoretical maximum of 4.77 Gbps
for a 6.25 Gbps lane rate after accounting for SpFi encoding
and protocol overhead. In this configuration, the Ethernet port
is generating Ethernet frames containing SpFi packets and
then decapsulating them back into SpFi packets.

Last Second Tatal

Data Characters

Data Rate

EOP Characters [ 183.792 ][ 7.389.448 |

e
——— [ |
————— |

Clear

EEP Characters
Address Errors
Seguence Errors

Data Errors

Fig. 5. Performance test results at 6.25 Gbps SpFi lane rate.

When transmitting SpFi packets carrying Ethernet frames,
the measured data rates remain nearly identical. In this case,
the Ethernet port first decapsulates the frames and
subsequently re-encapsulates them into SpFi packets.

III. VIRTUAL NETWORK INTERFACES

For SoC-based endpoints, commercial processors, or other
software-driven systems connected via SpaceFibre or
Ethernet, we implemented virtual network interfaces that
allow user applications to exchange both IP-based traffic and
native SpaceFibre packets through standard TCP/UDP
sockets. From the application’s perspective, communication
occurs over a standard IP network, while the virtual network
interface directs the traffic onto Ethernet or SpaceFibre
packets. This allows existing applications to use standard
networking APIs without modification.

A virtual network interface is a software construct that sits
directly beneath the operating system’s (OS) networking
stack. Each virtual interface is configured with an IP address
(or subnet) and a maximum transmission unit (MTU). The
MTU defines the maximum packet size supported by the
interface; if a packet exceeds this value, the kernel
automatically fragments it before transmission. Likewise,
fragmented packets are reassembled by the OS networking
stack before delivery to the application, ensuring transparency
for higher-layer protocols and applications.

When an application opens a TCP or UDP socket, the OS
stack generates the corresponding IP packets and forwards
them to the appropriate virtual interface, depending on the
source and destination IP address of the socket configuration.



The interface encapsulates these IP packets into link-layer
packets and transmits them across either Ethernet or
SpaceFibre links. In the reverse direction, received packets are
decapsulated, reconstructed as IP packets, and injected back
into the OS stack.

A virtual network interface can be realized through
different mechanisms, ranging from user-space interfaces
(e.g. TUN interface) to fully integrated kernel-level drivers,
depending on performance and deployment requirements.

Figure 6 shows the network stack supporting the proposed
unified network architecture. Applications operate over
distinct IP subnets depending on whether they generate
standard IP traffic or native SpFi traffic, which are managed
by different types of network interfaces. Also, the virtual
network interface is configured to either use a SpFi or Ethernet
hardware device driver. To support SpFi QoS, a dedicated
virtual network interface can be assigned to each VC, or for
Ethernet links, to the equivalent PCP field.

| Aplications (e.g. FTP, RMAP protocol) |

Sockets
oS Transport Layer (e.g. UDP, TCP) |
TCP/IP Il
Stack
Network Layer (IP)
IP packets
Virtual
Network | IP Traffic " | SpFi Traffic "
Interfaces
SpFi packets Eth frames
Il-)IW Device | SpaceFibre | Ethernet |
river

Fig. 6. Unified Network Stack

Under the hood, these network interfaces implement
among other functions:

e The address translation, so that IP addresses map
correctly to MAC or SpFi logical addresses, based on
direct translation, static configuration or dynamically
using network discovery algorithms. Different subnets
can be used for each SpFi virtual network. For simplicity,
an [P address can also contain the actual SpFi destination
logical address being used.

e For outgoing standard IP traffic, the network interface
first encapsulates the IP packets within Ethernet frames.
In case of a SpFi link, these frames are then encapsulated
into SpFi packets. IP traffic is always encapsulated in an
Ethernet frame even when there are no Ethernet links
involved. This allows the source of IP packets to be
agnostic of the destination using SpFi links or Ethernet.

e For incoming standard IP traffic, a standard Ethernet
network interface is used for Ethernet links. For SpFi
links, a custom network interface extracts the IP packet
from the Ethernet frame encapsulated within the SpFi
packet received.

e For outgoing native SpFi traffic, applications use the
UDP protocol to send a complete SpFi packet. The
network interface extracts the SpFi packet from the UDP
payload within the IP packet. For Ethernet links, the SpFi
packet is then encapsulated into an Ethernet frame.

e For incoming native SpFi traffic, the SpFi packet is
received either directly over a SpFi link or from an
Ethernet frame over an Ethernet link. The packet is then
encapsulated into a UDP datagram within an IP packet
and delivered to the OS networking stack.

This layered architecture integrates all endpoints,
including COTS sensors, SoC-based processors, and FPGA-
only instruments, into a unified network, allowing each device
to operate seamlessly with either standard IP protocols or SpFi
protocols tailored for space applications.

IV. EVALUATION

To implement and evaluate the overall solution, the
network depicted in Figure 1 was built using the following
hardware: a PC equipped with an Ethernet card emulates the
COTS processor; another PC with a STAR-Dundee STAR-
Ultra SpFi interface emulates the SoC FPGA; and a VCK190
Evaluation Kit with a Versal FPGA [7] implements the
upgraded STAR-Dundee SpFi Router IP with an Ethernet
port. The standalone FPGA shown in Figure 1 is expected to
handle native SpFi protocols, for example, a mass-memory
unit processing RMAP commands in hardware. For
simplicity, this use case is evaluated by just reading the
routing table of the SpFi Router using RMAP read commands.

A. TUN interfaces

The virtual network interfaces are implemented as TUN
interfaces. There is a TUN interface per VC for SpFi endpoints
and one per PCP value for Ethernet endpoints. The OS
provides a TUN kernel driver that exposes IP packets from the
network stack through read and write file descriptors. The
functionality of each virtual network interface is implemented
in a user-space process that accesses these file descriptors.
This approach greatly simplifies the implementation, although
it may not achieve the performance of a kernel-space network
driver [8].

B. IP Address translation
In this implementation, a direct translation is used between

IP, MAC and SpFi logical addresses, using IP addresses with
the following format:

IP traffic: 10.100.<VN>.<LA>
SpFi traffic: 10.100.<VN+128>.<LA>

Where <VN> is the SpFi virtual network number (VN) and
<LA> is the SpFi destination logical address. For SpFi traffic
using path addressing, <LA> is set to zero.

Each endpoint in the unified network is assigned a unique
SpFi LA, even for endpoints connected through Ethernet
links. This LA serves as a common identifier across all
network layers. It is embedded in the MAC address of
Ethernet endpoints (using the format defined in Section II-D)
and, together with the VN, determines the IP address assigned
to the TUN interface of each virtual channel or PCP.



C. Example Results

Figure 7 shows a screenshot of the STAR-Ultra Link
Analyser capturing an IP packet received from a SpFi link.
The IP packet was generated by an endpoint with a standard
Ethernet interface and was encapsulated within a SpFi packet
by the Ethernet port of the SpFi Router. The packet begins
with SpFi LA value 0x29, followed by the SpFi protocol ID
byte indicating that the SpFi packet contains an Ethernet frame
(value OxEE is used in our implementation). After the Ethernet
and IP headers, the actual IP payload is highlighted.

Packet View
Rx1>» vc1

Header: 29 (150 bytes)

Fig. 7. TP packet received by a SpFi link

We have previously described how virtual network
interfaces enable the use of UDP to send native SpFi traffic
via either SpFi or Ethernet links. Figure 8 shows a simple
Python script that sends a UDP packet with an RMAP read
command. The SpFi path address is included in the UDP
payload, so the destination IP address is used only to select the
interface corresponding to the specified VN.

import socket

SRC_IP
DST_PORT

nn

PATH ADDR = 0 # SpFi
DST_IP = 1
RMAP rd = [254,1,73,32,0,0,0,1,254,0,0,0,0,0,64,2,0,0,4,138]
packet = bytes([PATH ADDR] + RMAP xd)

= socket.socket (socket.AF INET, socket.SOCK_DGRAM)
.setsockopt (socket.SOL_SOCKET, socket.SO_PRIORITY, 1)
.bind((SRC_IP, 0))

.sendto(packet, (DST_IP, DST_PORT))

3
s
s
s

Fig. 8. Python script to send an RMAP packet using UDP

Figure 9 shows a screenshot of the Wireshark software
with a UDP packet received over an Ethernet link, containing
the corresponding reply packet from the SpFi Router
configuration port. The data field begins with the protocol ID
byte 0x1, indicating an RMAP packet. The RMAP command
reads a 32-bit register with the ASCII value “SpFi”, as shown
in the highlighted RMAP data field.

Frame 2: 46 bytes on wire (368 bits), 46 bytes captured (368 bits) on int

Raw packet data
Internet Protocol Version 4, Src: 10.100.128.0, Dst: 10.100.128.44
0100 .... = Version: 4
.+.. 0101 = Header Length: 20 bytes (5)
» Differentiated Services Field: Ox00 (DSCP: CS®, ECN: Not-ECT)
Total Length: 46
Identification: 0x0001 (1)
» 000. .... = Flags: 0x0
...0 0000 GOOO GAOO = Fragment Offset: ©
Time to Live: 64
Protocol: UDP (17)
Header Checksum: @x65ca [validation disabled]
[Header checksum status: Unverified]
Source Address: 10.100.128.0
Destination Address: 10.100.128.44
User Datagram Protocol, Src Port: 5000, Dst Port: 60946
Source Port: 5000
Destination Port: 60946
Length: 26
Checksum: 0x4d13 [unverified]
[Checksum Status: Unverified]
[Stream index: 0]

» [Timestamps
UDP payload (18 bytes)
Data (18 bytes)

Data: [01fe010900Tc000000000004be5370466974|
[LengthT 18]

45 00 00 2e 00 01 00 00 40 11 65 ca Pa 64 80 @0 E--. @e -d
Qa 64 80 2c 13 88 ee 12 00 1a 4d 13 01 fe 01 @9 d, M
00 fe 00 0O OO 00 GO 04 be 53 70 46 69 74

Fig. 9. UDP packet with RMAP reply data

Finally, Figure 10 shows a file transfer between two
endpoints, across a network with both SpFi and Ethernet links.
A standard FTP application is used, highlighting the
advantages of integrating the standard OS network stack into
SpFi networks.

ntering
1ing BIN

Transfer complete.

Fig. 10. FTP file transfer across SpFi and Ethernet links

D. Future work

The evaluation was performed using Gigabit Ethernet
MACs and TUN virtual interfaces. However, the Ethernet port
of the SpFi Router supports much higher speeds, and the MAC
is currently being upgraded to 10 GbE. Future work will focus
on the development of kernel-space network drivers to
achieve maximum throughput and lower latency, building on
our previous work on high-performance driver architectures

[9].
V. CONCLUSIONS

In contrast to Ethernet related protocols such as TSN and
TCP, SpaceFibre links can operate without software
intervention, are not constrained by a maximum packet length
and provide a reliable link that transparently mitigates
single-event effects produced by radiation events [10]. The
flexibility of the SpaceFibre packet format and the robustness
of its broadcast mechanism enable custom redundancy
mechanisms and precise time distribution without the risk of
broadcast storms that can occur in Ethernet networks [11,12].
The proposed solution allows SpaceFibre technology to
integrate COTS devices with Ethernet interfaces and leverage
the standard TCP/IP stack to deliver even more capabilities.



REFERENCES

ECSS, SpaceFibre — Very High-Speed Serial Link, ECSS Standard
ECSS-E-ST-50-11C, Issue 1, European Cooperation for Space Data
Standardization, May 2019. [Online]. Available: http://www.ecss.nl

S. Mills and S. Parkes, “TCP/IP over SpaceWire,” in Proc. DASIA
2003 — Data Systems in Aerospace, vol. 532, 2003.

D. Dymov, Y. Sheynin, and V. Olenev, “STP-ISS transport protocol
application for SpaceFibre on-board networks,” in Proc. 7th Int. Conf.
Control, Decision and Information Technologies (CoDIT), vol. 1,
IEEE, 2020.

E. Smirnov and M. Sennikovsky, “Ethernet over InfiniBand: Current
solutions,” in Proc. 14th Annu. OpenFabrics Alliance Workshop, Apr.
2018.

IEEE Computer Society, /[EEE Standard for Local and Metropolitan
Area Networks: Media Access Control (MAC) Bridges, 1IEEE Std
802.1D™, 2004.

A. Gonzalez Villafranca, A. Ferrer Florit, M. Farras Casas, and S.
Parkes, “SpaceFibre IP cores for fast adoption of next-gen FPGA

communication architectures,” in Proc. IEEE Aerospace Conf., Big
Sky, MT, USA, Mar. 2025.

(7

(8]

]

[10]

[11]

[12]

AMD, AMD Versal Adaptive SoCs. [Online]. Available:
https://www.amd.com/en/products/adaptive-socs-and-
fpgas/versal.html

P. Emmerich, M. Pudelko, S. Bauer, S. Huber, T. Zwickl, and G. Carle,

“User space network drivers,” in Proc. ACM/IEEE Symp. Architectures

for Networking and Communications Systems (ANCS ’19), 2019.

D. Gibson, S. Mills, A. MacLennan, and S. Parkes, “Efficient high data
rate networking using remote direct memory access over SpaceFibre,”
in Proc. Eur. Data Handling & Data Processing Conf. (EDHPC),
Juan-les-Pins, France, 2023, pp- 1-5, doi:
10.23919/EDHPC59100.2023.10396179.

A. Gonzalez, A. Ferrer, M. Farras, S. Parkes, P. Maillard and K.
O'Neill, "Characterisation of AMD Versal FPGA Transceivers Under
Heavy-Ion Radiation," 2025 25th European Conference on Radiation
and Its Effects on Components and Systems (RADECS), Antwerp,
Belgium, 2025.

S. Parkes, A. Ferrer, A. Gonzalez, and D. Gibson, “SpaceFibre onboard
interconnect: From standard, through demonstration, to space flight,”
in Proc. IEEE Aerospace Conf., Big Sky, MT, USA, Mar. 2025.
“Performance evaluation of Ethernet LAN broadcast and point-to-
point,” Comput. Commun., vol. 10, pp. 290-298, 1987, ISSN 0140-
3664.



