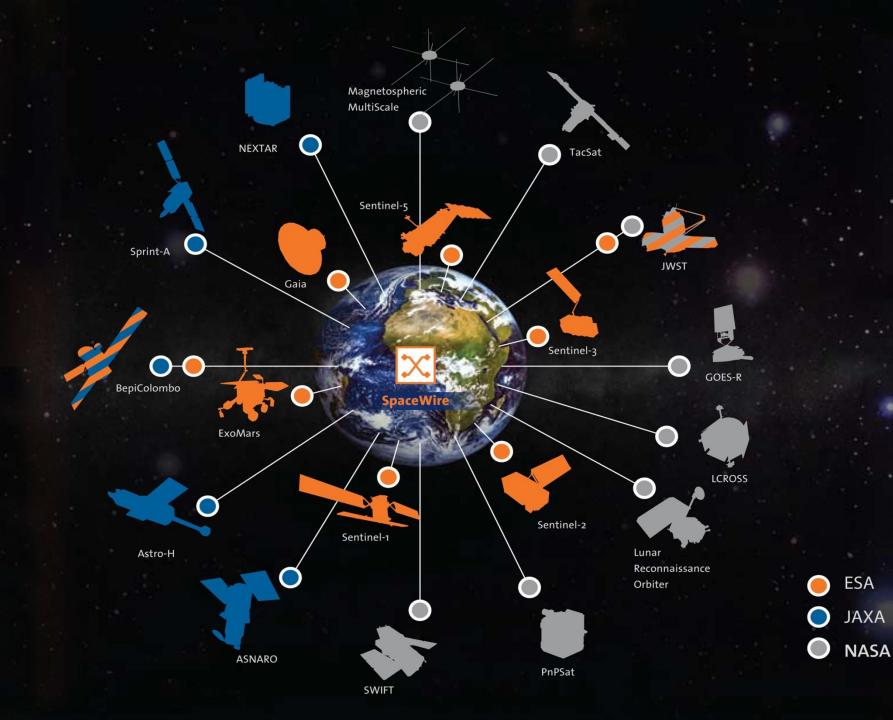


SpaceWire Technologies deliver multi-gigabit data rates for on-board Spacecraft

SpaceTech Expo 2013

Gregor Cranston Business Development Manager


Introducing SpaceFibre

A very high-speed serial data-link for use in data-handling networks for high data-rate payloads STAR-Dundee SpaceFibre: Gigabit data-rates for Spacecraft

- What is SpaceFibre?
 - Legacy & Flight heritage: SpaceWire
 - Requirements leading to SpaceFibre
- What is SpaceFibre?
 - Features and Architecture
- What is SpaceFibre?
 - SpaceFibre implementations
 - Products and Availability

STAR-Dundee SpaceWire – flight heritage & legacy

- ESA standard published 2003, authored by Steve Parkes UoD.
 - SpaceWire CODEC IP core & Router
- Purpose of SpaceWire standard:
 - facilitate construction of high performance on-board data-handling systems
 - help reduce system integration costs
 - promote compatibility between data-handling equipment and subsystems
 - support the re-use of data-handling equipment across different missions
- Key features:
 - Simple, small and low power interfaces readily implemented in ASICs and FPGAs
 - Bi-directional, full duplex point-to-point links supporting data rates up to 200 Mbits/s
 - Extensive network capabilities provided by routers
 - Comprehensively documented international standard
 - Many radiation-tolerant components available
- Established standard for data networking on-board spacecraft

STAR-Dundee SpaceFibre Requirements

- SpaceFibre Objectives
 - Compatible with SpaceWire
 - At the packet and network levels
 - High speed
 - 2 Gbits/s now (2.5 Gbit/s signalling)
 - 5 Gbits/s planned (6.5 Gbits/s signalling)
 - Very high speed
 - Multiple lanes e.g. 4 lanes 8 Gbits/s
 - Galvanic isolation
 - Copper and fibre optic implementations
 - 5 m copper
 - 100 m optical fibre
 - Low mass cable
 - 60 g/m copper
 - 30 g/m fibre

STAR-Dundee SpaceFibre Requirements

- Target capabilities for space applications
 - Very high-speed
 - Point-to-point
 - Virtual networks
 - Virtual circuits
 - Low latency signalling
 - Integrated networks
- QoS Quality of Service
 - Deterministic behaviour
- FDIR Fault Detection Isolation and Recovery
 - Improve reliability

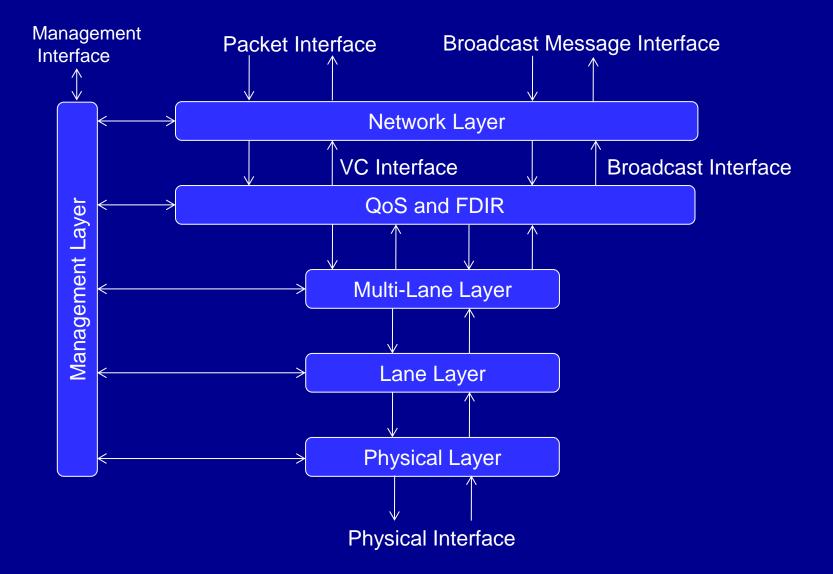
STAR-Dundee Qualitative Requirements

	Distance	Rate	Latency	Packet size	QoS
Data-handling network	Short to long	Low to very high	Not important	Short to long	Reserved bandwidth
Control bus	Short to long	Low	Low	Short to long	Deterministic delivery
Telemetry bus	Short to long	Low	Low	Short	Reserved bandwidth
Computer bus	Short	Very high	Low	Short to long	Reserved bandwidth
Time-sync bus	Short to long	Low	Very low	Short	High priority
Side-band	Short	Low to high	Very low	Short	High priority

STAR-Dundee SpaceFibre Introduction

- Spacecraft on-board data-handling network
 - Compatible with SpaceWire at packet level
- Targeting support of:
 - high data-rate payloads, e.g synthetic aperture radar and hyper-spectral optical instruments
 - robust, long distance communications for launcher applications
 - avionics applications with deterministic delivery constraints
- SpaceFibre key features
 - High performance
 - Low latency
 - Integrated QoS
 - Integrated FDIR capabilities
- Being developed by Steve Parkes and UoD, for ESA

STAR-Dundee SpaceFibre Key Features


- High performance
 - 2.5 Gbits/s with current space qualified technology
 - 20 Gbits/s and higher with future technology and multi-laning
- Low latency
 - QoS precedence
 - Broadcast channels
- QoS
 - Integrated
 - Bandwidth reservation
 - Priority
 - Scheduling for deterministic data delivery

STAR-Dundee SpaceFibre Key Features

– FDIR

- Fault detection
 - Parity/disparity
 - Invalid 8B/10B codes
 - Enhanced Hamming distance
 - CRC
 - Over and under utilisation of expected bandwidth
- Fault isolation
 - Galvanic isolation (AC coupling)
 - Data framing time containment
 - Virtual channels bandwidth containment
- Fault recovery
 - Rapid link-level retry
 - Graceful degradation on lane failure
 - Babbling idiot protection
 - Error reporting

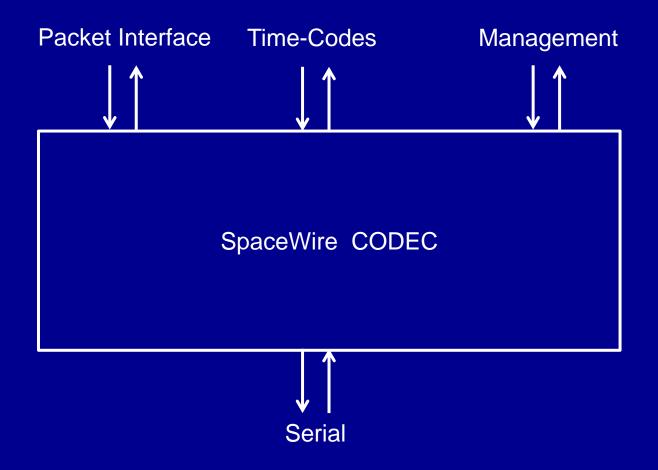
STAR-Dundee SpaceFibre Protocol Stack

STAR-Dundee SpaceFibre Layers

- Network
 - Packets
 - Packages information to be sent over link
 - <Destination Address><Cargo><EOP>
 - Transfer of packets over network
 - Same routing concepts as SpaceWire
 - Path and logical addressing
 - Broadcast Messages
 - Broadcasts short messages across network
 - Can carry time-codes, time messages, events
- Management
 - Configures, controls and monitors status

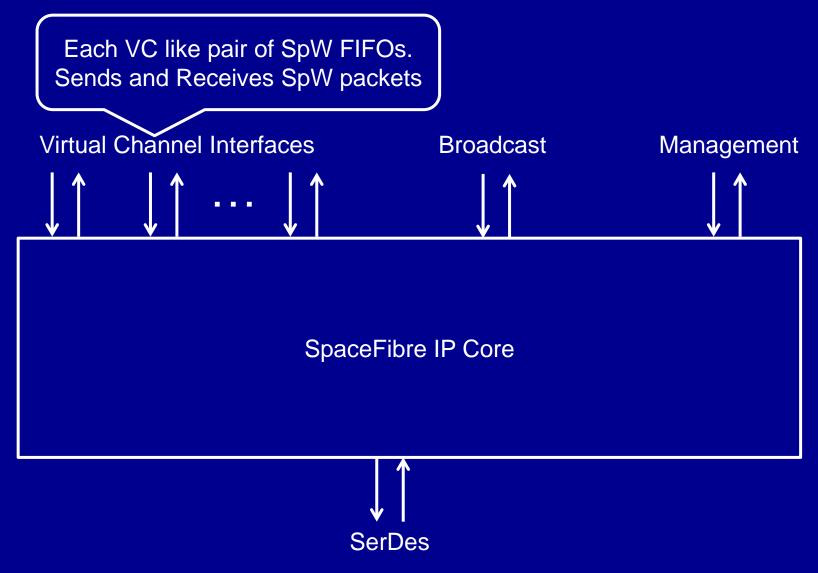
STAR-Dundee SpaceFibre Layers

- QoS and FDIR
 - Virtual Channel:
 - Quality of service and flow control
 - Framing:
 - Frames information to be sent over link
 - Scrambles SpaceWire packet data
 - Retry:
 - Recovers from transient errors
 - Single bit error cannot corrupt data or protocol operation
 - Can cope with bit error rate of 10⁻⁵
 - Automatic reconnection when BER lower than expected


Multi-Lane

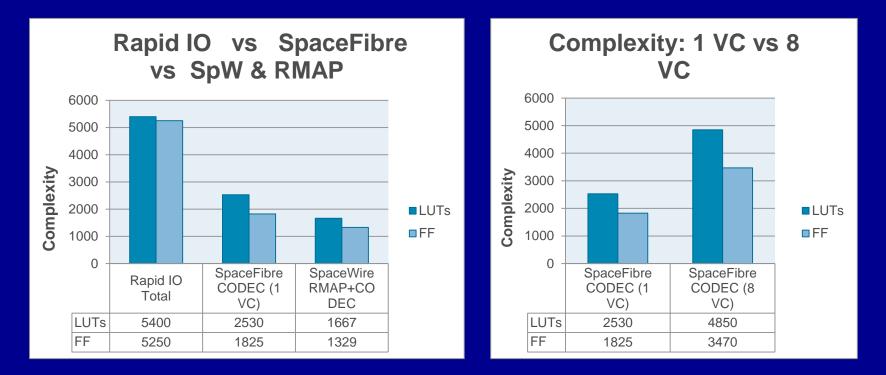
- Runs several SpaceFibre lanes in parallel
- Provides higher data throughput and redundancy with graceful degradation

STAR-Dundee SpaceFibre Layers


- Lane
 - Lane control
 - Lane initialisation and error detection
 - Encoding/Decoding:
 - Encodes data into symbols for transmission
 - 8B/10B encoding
 - DC balanced
- Physical:
 - Serialisation:
 - Serialises SpaceFibre symbols
 - Includes oversampling clock-data recovery
 - Fibre optic or electrical medium

STAR-Dundee SpaceWire CODEC

16

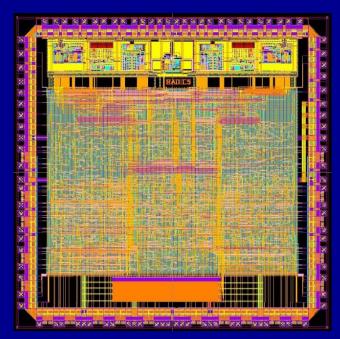

STAR-Dundee SpaceFibre IP Core

STAR-Dundee SpaceFibre IP Core

- VHDL IP Core
 - Compliant to current version of standard
 - Draft E published October 2012
 - Interfaces
 - Virtual channel interface
 - Broadcast channel interface
 - Management interface
 - QoS
 - Integrated priority and bandwidth reservation
 - Scheduling with 64 time-slots
 - Retry
 - Rapid retry
 - Single lane
 - Multi-lane support will be provided 2Q2013
- Beta released March 2013

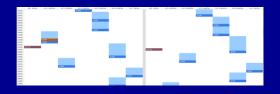
STAR-Dundee SpaceFibre IP core Implementation

Rapid IO v2.1 x1 (Based on Xilinx srio_ds696, Spartan 6 results)


Low implementation complexity

- 12% to 20% utilisation of AX2000S (1 or 2 VCs)
- 3% to 6% utilisation of Spartan 6 75T (1 to 8 VCs)
- Similar to SpaceWire+RMAP IP core

STAR-Dundee SpaceFibre Current Availability



STAR-Dundee SpaceFibre Diagnostic Interface and Analysis

STAR Fire

- SpaceFibre interface
 - 2.5 Gbits/s signalling rate
 - 8 VCs on each SpaceFibre interface:
 - 2 VCs connected to internal SpW router
 - 6 VC connected to high speed pattern generators/checkers
- Diagnostics
 - Full analysis capabilities
 - Monitoring signals from UUT
 - Lane initialisation, Frame transfer, Broadcast operation
 - Packets over up to 8 VCs
- Analysis
 - In-line analysis between two UUTs
 - Once connection established can capture and analyse
 - Control words, Data frames,
 - Broadcast frames, Idle frames
 - Packet transfer over up to 8 VCs

Conant	LUCHY	init3	B4T3		Comainit	LLOW.	8672	
Canadrat	LLCW	8473	BETS		Comaint	LLCW	6672	
Consist	LLCW	RIT3	BATS		Comaint	LLOW.	8972	
Camaint	LLCW	RITS .	8473		Constel	LLCW	8472	
Canvalvit	LLCW	avits	 PATTS	INITS	Conabilit	LLOW	8473	
Constant	LLCW	RIT3	BATS	INITS	Constit	LLCW	N13	
Camabal	LLCW	ETII6	HATE	BATS	Complet	LLCW	6473	
Canadrat	LLOW	6173	9473	INITS	Conahit	LLOW	NITS .	
Constat	LUCIW	INITS.	 PAITS	DLE	Comma	LLOW	3.0	
Conunt	LLCW	8473	1473	DLE	Cartma	LLCW	3.0	
Canadret	LLOW	N(T)	 PHITO	IDLE	Carnesa	LLOW.	OLE.	
Conditi	LLCW	entta	BUTS	DLE	Comme	LLOW	3.0	1
Centiliti	LLCW	PUT2	BRITS.	PGT+1(1)	PCT	1	1	
Consist	LLOW	RIT3	B4T2	FCT+2(2)	FCT	2	2	
Cenaint	LLCIW	RED	 INITS	PCT+2(3)	FCT	. 3	3	
Canant	LUCHY	INITS .	BATS .	FCT+414)	PGT	4		

STAR-Dundee ESA Projects using SpaceFibre

- 2 x High Performance COTS Based Computer
 - Astrium (Fr)
 - Step 2 (Prototyping and Validation),
- 1 x Leon with Fast Fourier Transform Co-processor
 > SSBV (NL)
- 1 x FPGA Based Generic Module and Dynamic Reconfigurator,
 - > TWT (D)
- 2 x Next Generation Mass Memory
 > Astrium (D), IDA (D)
- 1 x High Processing Power DSP, Astrium (UK)

Visit us at Stand 5029

Thank you