
SPACEWIRE EGSE 

Session: SpaceWire Test and Verification 

Short Paper 

Stephen Mudie, Paul E. McKechnie 

STAR-Dundee, c/o University of Dundee, School of Computing, Dundee, DD1 4HN 

Steve Parkes, Martin Dunstan 

University of Dundee, School of Computing, Dundee, DD1 4HN 

E-mail: stephen.mudie@star-dundee.com, paul.mckechnie@star-dundee.com, 

sparkes@computing.dundee.ac.uk, mdunstan@computing.dundee.ac.uk 

 

ABSTRACT 

The SpaceWire Electronic Ground Support Equipment (EGSE) is a STAR-Dundee 

product [1] designed to simulate and stimulate SpaceWire devices. It provides a 

means of generating user defined packets in pre-defined sequences at specific times 

and data rates. The SpaceWire EGSE is configured using a script that is compiled and 

loaded onto the SpaceWire EGSE unit. Once configured, the EGSE can generate 

complex SpaceWire packet sequences without further interaction from host PC 

software.  

Real-time SpaceWire Electronic Ground Support Equipment can be implemented 

easily with the SpaceWire-EGSE unit, avoiding the need for complex and expensive, 

real-time software development. 

1 INTRODUCTION 

SpaceWire Electronic Ground Support Equipment (EGSE) is needed to support the 

integration and testing of spacecraft that use SpaceWire. The EGSE has to simulate 

instruments and other equipment during integration and test, and has to do this with 

similar if not identical timing. Furthermore the SpaceWire EGSE has to integrate with 

other test equipment, either responding to events or triggering other pieces of 

equipment. Typically SpaceWire EGSE is implemented using a SpaceWire interface 

board in a rack with a host computer which controls the SpaceWire interface, often at 

the same time as controlling other EGSE interfaces. To provide representative timing 

of SpaceWire packets, the software has to operate in real time, which is both costly 

and difficult to develop. Last minute changes are very difficult to implement, 

especially when the software is controlling multiple interfaces. 

What is needed is a unit that will allow arbitrary SpaceWire packets to be transmitted, 

in a predefined sequence, at a specified user data rate. It should initiate the sending of 

a packet sequence on command from the host software, when a particular SpaceWire 

packet is received, or when an external trigger is asserted. It should do this without the 

need for any real time software development. 

mailto:stephen.mudie@star-dundee.com
mailto:paul.mckechnie@star-dundee.com
mailto:sparkes@computing.dundee.ac.uk
mailto:mdunstan@computing.dundee.ac.uk


The new STAR-Dundee SpaceWire-EGSE unit is just such a unit. It is provided with 

a special scripting language which allows SpaceWire packets to be defined using easy 

to understand terms. This language also specifies the time sequencing of packets and 

the event or series of events that cause various packet sequences to be sent. The 

information thus provided is compiled and loaded on to the SpaceWire-EGSE 

hardware. Thereafter the only interaction with user real-time software controlling the 

SpaceWire-EGSE and other equipment is through software events that can be asserted 

by the user application or indicated by the SpaceWire-EGSE.  

2 HARDWARE 

The SpaceWire EGSE is configured via a USB connection to the host PC. It has two 

SpaceWire ports from which packets can be generated and received. It has four 

external triggers, three input and one output. It also has a large memory for storing 

packet definitions. 

 

3 SPACEWIRE EGSE SCRIPTING LANGUAGE 

The SpaceWire EGSE is configured using a simple yet powerful scripting language. 

The language can be used to define variables, events, packets, packet generation 

schedules and state machines. 

3.1 PACKET DEFINITION 

Packet definitions can consist of data defined in hexadecimal or decimal bytes, 

variable references, CRC and checksum calculations and EEP and EOP control 

characters. 

Example Description 

packet myPkt 

 hex(0A 0B 0C 0D) 

 eop 

end packet 

Defines a packet named “myPkt” 

consisting of data specified in 

hexadecimal bytes (0A 0B 0C 0D) 

followed by an end of packet marker. 

 

Above is a very basic packet definition. As with much of the SpaceWire EGSE 

language, packets are defined using a header, body and footer. The header consists of 

the “packet” keyword followed by the packet name and indicates the start of a packet 

definition. The packet body defines the packet contents. The packet footer consists of 

the keywords “end packet” and indicates the packet definition end. 



Example Description 

packet myPkt 

 start(crc8) 

 hex(0A 0B 0C 0D) 

 dec(01 02 03 04) * 2 

 stop(crc8) 

 crc8 

 eop 

end packet 

Defines a similar packet to the previous 

example but contains additional data 

specified in decimal. It also contains a 

CRC calculation and reference.  

 

The start and stop statements in the example above can be used to calculate CRC and 

checksum values for the data between them. The CRC or checksum value can then be 

referenced in the packet definition. 

3.2 VARIABLES 

The SpaceWire EGSE provides variables that are used to define packets with dynamic 

data. Variables have names by which they can be referenced in packet definitions 

along with a type and (optionally) an initial value. Each variable performs a function 

upon its value when read, based upon its type. The variable types available are 

increment (increments variable value by one when read), decrement (decrements 

variable value by one when read), rotate left (performs rotate left bit shift to variable 

value when read), rotate right (performs rotate right bit shift to variable when read) 

and random (assigns a random value to the variable). The example below 

demonstrates the use of a variable to dynamically set the ID of each packet sent. 

Example Description 

variables 

 transactionID inc8 = 0 

end variables 

 

packet myPkt 

 hex(0A 0B 0C 0D) 

 transactionID 

 eop 

end packet 

Defines an increment variable named 

“transactionID” with an initial value of 0.  

 

A packet definition containing a reference 

to the incrementing variable 

“transactionID”. 

3.3 PACKET GENERATION SCHEDULES 

A schedule is used to define a timed sequence of packets for packet generation. The 

schedule references packets defined earlier in the script. Packets can be sent relative 

to the start of the schedule or relative to the previous packet. We can also specify the 

number of times the packet is sent. 



Example Description 

schedule mySchedule1 

 5ms send myPkt1 * 2 

 10ms send myPkt2 

end schedule 

schedule mySchedule2 

 5ms send myPkt1 

 +10ms send myPkt2 

end schedule 

Schedule named “mySchedule1” sends 

packet “myPkt1” twice, 5ms after the 

schedule starts, and “myPkt2” once 10ms 

after the schedule starts. 

Schedule “mySchedule2” sends 

“myPkt1” 5ms after the schedule starts 

then “myPkt2” 10ms after “myPkt1” is 

sent. 

3.4 STATE MACHINE 

The state machine definition is responsible for control of the EGSE state. The state 

machine consists of state definitions. Each state has an associated schedule which is 

run when the state is entered at the data rate specified. Along with a schedule each 

state contains statements that determine when to change state and when to transition 

from one state to another. 

statemachine 1 

 initial state state1 

  do mySchedule1 @ 20Mbps 

  transition at end of schedule 

  on myTrigIn1 goto state2 

 end state 

 state state2  

  do mySchedule2 @ 50Mbps repeatedly 

  transition at end of packet 

  on myTimer goto state1 

 end state 

end statemachine 

 

The above example is a state machine definition for SpaceWire link 1 of the 

SpaceWire EGSE. Two states are defined named “state1” and “state2”. On entering 

“state1” the schedule named “mySchedule1” is run once at a data rate of 20Mbps. If 

the event named “myTrigIn1” is received then at the end of the current schedule the 

state will change to “state2”. On entering “state2” the schedule named 

“mySchedule2” is run repeatedly at a data rate of 50Mbps. If the event named 

“myTimer” is received then once the current packet is sent the state will change to 

“state1”. 

3.5 EVENTS 

As seen in the state machine definition above, events are used to control the current 

state and therefore the current packet generation schedule. There are pre-defined 

events and user defined events. Predefined events include link started, link errors 

(parity, escape, credit, and disconnect), time-code received, and packet generation 

events. User defined events are timers, counters, software and external triggers. 



Example Description 

timers 

 myTimer 10ms start on mySWEvent1 

end timers 

counters 

 myCounter 10 on myTrigIn1 

end counters 

software 

 mySWEvent1 1 

end software 

triggers 

 myTrigIn1 input 1 rising

 output high on myTimer 

end triggers 

 

A 10ms timer that begins when the 

event “mySWEvent1” is received. 

A counter that generates an event 

when the event “myTrigIn1” is 

received 10 times. 

Declaration of a software event. 

Generates “myTrigIn1” event when 

rising signal received on external 

input trigger pin 1. Generates a high 

external output trigger signal when 

“myTimer” event is received.  

 

Timers generate an event when a specified time is reached. The timer starts when the 

associated event is received. A counter has an initial value that is decremented each 

time an associated event is received. When the counter reaches zero it generates an 

event. 

External trigger-in events specify the event to generate when a trigger-in signal is 

received on the associated input pin. The external output trigger generates a signal 

when it receives a specific event. 

Software events permit host PC software to trigger a change in the state machine in 

the SpaceWire-EGSE. They provide a means of interaction with the host PC software. 

An API makes available functions the user can call upon to generate a software event. 

The host software can also be signalled when a specific event occurs or when a 

particular state is entered in the EGSE state machine. 

 



The screenshot above is taken from a SpaceWire Link Analyser and shows the EGSE 

generating a sequence of small packets on both SpaceWire links, at the maximum rate 

possible on the link. Note that the link is running at 350MHz and no NULL characters 

are seen in the trace. 

4 CONCLUSION 

This paper has briefly described the SpaceWire EGSE and the scripting language used 

to configure it. The scripting language can quickly be used to configure the 

SpaceWire EGSE unit to mimic the behaviour of the SpaceWire device of interest. 

The SpaceWire EGSEs ability to generate packets independent of host software 

means it can produce very similar if not identical packet generation behaviour to the 

simulated instrument. The external input and output triggers on the SpaceWire EGSE 

provide a means by which to integrate with other test equipment. Such capabilities 

make the SpaceWire EGSE a quick and efficient way of simulating SpaceWire 

devices. Using the SpaceWire EGSE it is possible to develop a complete SpaceWire 

instrument or other device simulation with real-time behaviour, in little more than one 

day. 

5 REFERENCES 

1. STAR-Dundee, http://star-dundee.com/products.php, STAR-Dundee SpaceWire 

Products, STAR-Dundee Website. 

http://star-dundee.com/products.php

