
Developing and Testing SpaceWire Devices and Networks

Steve Parkes and Stuart Mills

STAR-Dundee Ltd, STAR House, 166 Nethergate, Dundee, DD1 4EE, Scotland, UK.

Email: steve.parkes@star-dundee.com; stuart.mills@star-dundee.com

ABSTRACT

1 INTRODUCTION

SpaceWire is a data-handling network for use on-board
spacecraft, which connects together instruments, mass-
memory, processors, downlink telemetry, and other on-
board sub-systems [1]. SpaceWire is simple to
implement and has some specific characteristics that
help it support data-handling applications in space:
high-speed, low-power, simplicity, relatively low
implementation cost, and architectural flexibility
making it ideal for many space missions. SpaceWire
provides high-speed (2 Mbits/s to 200 Mbits/s), bi-
directional, full-duplex data-links, which connect
together SpaceWire enabled equipment. Data-handling
networks can be built to suit particular applications
using point-to-point data-links and routing switches.

Since the SpaceWire standard was published in January
2003, it has been adopted by ESA, NASA, JAXA and
RosCosmos for many missions and is being widely
used on scientific, Earth observation, commercial and
other spacecraft. High-profile missions using
SpaceWire include: Gaia, ExoMars rover, Bepi-
Colombo, James Webb Space Telescope, GOES-R,
Lunar Reconnaissance Orbiter and Astro-H.

The development and testing of the SpaceWire links
and networks used on these and many other spacecraft
currently under development, requires a comprehensive
array of test equipment. In this paper the requirements
for test equipment fulfilling key test functions are
outlined and then equipment that meets these
requirements is described. Finally the all-important
software that operates with the test equipment is
introduced.

2 DEVELOPING AND TESTING SPACEWIRE

SYSTEMS

SpaceWire is currently being used both as a point-to-
point link and as a network with routing switches
interconnecting SpaceWire units. To support the
development of SpaceWire systems several different

types of test equipment are required. A SpaceWire
interface board or unit can provide a test PC with
SpaceWire capability so it can be used with associated
software to exercise and test SpaceWire units under
development. For real-time emulation of high-speed
SpaceWire units or those that have some tricky timing
constraints that cannot be met readily with an interface
card and real-time software, a hardware-based
emulation unit is required. To check that a link is
operating correctly, to inject errors, and to check that
application software is behaving as it should when
sending and receiving SpaceWire packets, a Link
Analyser is required that can monitor, record and
analyse information flowing on the SpaceWire link.
When working with a complete SpaceWire network it
is important to be able to relate packets flowing over
several SpaceWire links. A SpaceWire multi-link
recorder is required that can collect possibly hours of
data from several links in a network for subsequent
analysis and display.

The principal requirements of these different types of
test equipment are outlined below:

 SpaceWire Interface:
o High performance for both large and small

packets;
o Various form factors (PCI, PCIe, cPCI, PXI,

USB, etc.);
o Comprehensive driver support;
o Easy to move from one operating system to

another;
o Easy to move from one type of interface board

to another without having to re-write the
software.

 SpaceWire Equipment Emulator:

o Operate in real-time at full link speeds while
sending large or small packets;

o High resolution timing accuracy;
o Simple, rapid means of specifying the packets

to be sent and the related timing;
o Emulate SpaceWire behaviour of an

instrument in response to external signals,
SpaceWire commands and host software.

Programme and Abstracts Book of the DASIA 2014 Conference
Warsaw, Poland, 3-5 June 2014

mailto:steve.parkes@star-dundee.com
mailto:stuart.mills@star-dundee.com

 SpaceWire Link Analyser:
o Unobtrusive monitoring of a SpaceWire link;
o Large recording memory;
o Different views of recorded data, including

low-level character view and high-level
packet view;

o Ability to decode SpaceWire packets that
carry protocols like RMAP.

o Configurable triggering options including pre
and post trigger, triggering on an error,
triggering on defined data, triggering on a
sequence of events.

 SpaceWire Recorder

o Record data from several SpaceWire links;
o High overall data collection rate to memory;
o Large capacity memory, able to store several

hours of network data;
o Pre and post triggering capabilities;
o Display and network traffic analysis software

for displaying the data gathered in a
meaningful way.

3 SPACEWIRE DEVELOPMENT AND TEST

EQUIPMENT

In this section new SpaceWire test equipment from
STAR-Dundee Ltd. that addresses the requirements
given in section 3 are described.

3.1 Interfacing to SpaceWire Devices

STAR-Dundee has a comprehensive range of interface
devices for SpaceWire including PCI, PCIe, cPCI, PXI
and USB 2.0 devices. A new version of the widely
used SpaceWire-USB Brick device will shortly be
available along with a versatile cPCI/PXI board.

3.1.1 cPCI/PXI MkIII

The SpaceWire cPCI/PXI MkIII board is an extremely
versatile platform for SpaceWire test equipment.
Variants of this board can be used to provide:

 A four port SpaceWire cPCI/PXI interface;
 An eight or more port router;
 A rack mounted link analyser;
 A four link SpaceWire recorder;
 SpaceWire to SpaceFibre bridge;
 Many other test and development boards.

The cPCI MkIII board comprises a 3U cPCI/PXI board
containing an FPGA, a selection of flexible interface
boards, a custom front panel for that set of interfaces.
The FPGA on the board is configured for a particular
application, the required flexible interface boards
added, and a front panel provided for those interfaces.
For example an 8-port SpaceWire router board would

have eight SpaceWire interface boards. A photograph
of the cPCI/PXI MkIII board is shown in Figure 3-1.

Figure 3-1 Photograph of cPCI/PXI MkIII board

3.1.2 Brick MkIII

The Brick MKIII will be described in detail in the full
paper.

3.2 Real-Time Instrument Emulation

The SpaceWire EGSE is a real-time SpaceWire
instrument emulator. It has been designed to rapidly
emulate many different SpaceWire instruments in real-
time with microsecond accuracy. A typical emulation
takes about one day to develop. A special SpaceWire
emulation language has been written that describes the
SpaceWire packets to be sent, the link speed, actual
data-rate, and timing of a sequence of packets, and the
internal state of the instrument. For example in a
“stand-by” state the instrument may be waiting to start
sending packets. Every ten seconds it may enter an
automatic housekeeping “keep-alive” indication state,
where it sends a short SpaceWire packet to a central
controller to indicate that the instrument is still alive.
When a command is received via SpaceWire or via
some other means the instrument enters an “active”
state sending SpaceWire packets according to a
predefined schedule. The SpaceWire EGSE language
can be used to rapidly describe instrument behaviour
including the schedule of packets to be sent and the
detailed contents of those packets.

Once the emulation script has been written it is
compiled and downloaded into the EGSE hardware
which executes the required behaviour in real-time.
When configured, the SpaceWire EGSE hardware
operates independently of the software resulting in
real-time performance. The EGSE hardware can
interact with other emulation software using software
events that are passed via an API to the EGSE unit.
The software event can cause a state transition in the
EGSE unit, changing the perceived behaviour of the
emulated instrument. External hardware triggers can be
used in a similar way.

The SpaceWire EGSE unit is illustrated in Figure 3-2.
As can be seen in the photograph the SpaceWire EGSE
has two SpaceWire ports so is capable of emulating
two separate SpaceWire instruments concurrently.

Figure 3-2 SpaceWire EGSE front view

An example of the SpaceWire emulation language is
shown in Figure 3-3. The simplicity of the language
and the ease with which it can be understood and used
to create fairly sophisticated instrument emulations is
apparent from this short example.

Send Multiple Packets

Packet Declarations

packet myPkt

 hex(0A 0B 0C 0D)

 eop

end packet

packet myPktWithCRC

 start(crc8)

 hex(0A 0B 0C 0D)

 stop(crc8)

 crc8

 eop

end packet

Schedule Declaration

schedule mySchedule

 5ms send myPkt * 2

 10ms send myPktWithCRC * 2

end schedule

State machine declaration

statemachine 1

 initial state state1 @ 100Mbps

 do mySchedule repeatedly

 transition at end of schedule

 end state

end statemachine

Figure 3-3 SpaceWire EGSE scripting language

3.3 Link Analysis

The SpaceWire Link Analyser Mk2 provides several
capabilities for testing a SpaceWire and debugging
hardware and related software. The link analyser is
inserted in the SpaceWire link between two SpaceWire
units. It monitors the link and records data when a
trigger event occurs. The data can be captured and
displayed at various levels.

Link level trace: Monitoring, tracing and recording
traffic at the link level. This may be used to confirm

SpaceWire link start-up, flow-control, data transfer,
and error recovery. An example is shown in Figure 3-4.

Figure 3-4 Example link level display

Packet level trace: Monitoring, tracing and recording
of SpaceWire packets. This is used to monitor the flow
of packets exchanged across a SpaceWire link, the
response of a system to packet errors, and the control
of SpaceWire systems using control packets. An
example is shown in Figure 3-5.

Figure 3-5 Detail of packet level display

RMAP analysis: Display of RMAP transactions [2] in
a readily understandable form with each field of the
protocol data unit clearly identified, simplifying RMAP
analysis immensely. This is illustrated in Figure 3-6.

Figure 3-6 Interpreting RMAP transactions

Recording of events is started by a trigger condition,
which can be a specific event (e.g. disconnect, EEP,
external trigger), after a character sequence (e.g. EOP
plus header/address of a packet), or after a specific
sequence of events. Pre- and post- event triggering are

supported with the trigger position being indicated on
the traffic display.

To support the testing and debugging of FPGAs and
other board-level units with SpaceWire interfaces, a
38pin Mictor logic analyser connector is provided on
the rear panel of the Link Analyser Mk2. The
SpaceWire traffic in each direction of the link is
decoded into a set of characters which are provided on
the logic analyser connector. The logic analyser can
have one pod monitoring the SpaceWire information
from the Link Analyser and other pods monitoring pins
on the FPGA or other components of the board. This
dramatically simplifies the testing of units whose
function may be affected by SpaceWire commands, or
units that send SpaceWire packets on particular
conditions.

3.4 Recording Network Traffic

The SpaceWire Recorder is designed to support the
validation and debugging of complete SpaceWire
systems. The SpaceWire Recorder is shown in Figure
3-7.

Figure 3-7 SpaceWire Recorder front view

The SpaceWire Recorder unit comprises a small 3U
PXI/cPCI rack, fitted with a SpaceWire interface
board, a control computer and one or more SATA solid
state disc drives. The SpaceWire interface board has
eight SpaceWire interfaces which are able to support
recording of SpaceWire packets running in both
directions of up to four links. Each SpaceWire link can
operate at up to 200 Mbits/s link speed. The control
computer provides a range of interfaces to the
SpaceWire recorder including dual Gigabit Ethernet for
remote control or data logging. The SpaceWire
Recorder is fitted as standard with one 480 Gbyte
SATA solid state disc drive to give high recording
data-rate and reliability. A block diagram of the
SpaceWire Recorder unit is illustrated in Figure 3-5.

Control
PC

SATA
Solid
State

Memory

SATA
Solid
State

Memory
(Optional)

SATA
Solid
State

Memory
(Optional)

STAR
SpaceWire
Recorder

Gigabit
Ethernet

Gigabit
Ethernet

USB2.0

USB2.0

Graphics
Display

SpaceWire

Figure 3-8 SpaceWire Recorder block diagram

4 SPACEWIRE SOFTWARE

Software for developing, testing and validating
SpaceWire systems can be expensive to develop,
especially when fast data-rates are required. In this
section the new STAR-System software is explored.

4.1 STAR-System

STAR-System is the API and driver system provided
with STAR-Dundee’s new range of SpaceWire
interface and router devices. It presents a common
interface across operating systems, and allows different
types of SpaceWire devices to be accessed in a
consistent manner.

4.1.1 Application Programming Interface

A full API is provided to allow all functions of
supported devices to be controlled from application
software. Both C and C++ versions of the API are
provided, which also allows the API to be imported
into other languages. LabVIEW support is available to
allow easy access to devices from LabVIEW
applications. It is planned that a variety of
programming languages will be supported in the future,
including Python, .NET and Java.

The API is common across several of STAR-Dundee’s
products, and is consistent for each programming
language and platform supported. This simplifies
software development and allows migration of test
software from one device to another and from one
platform to another, enhancing software reuse and
reducing the risk of schedule delays. The API also
takes advantage of features provided by each language,
making the API as efficient and easy to use as possible.

A key feature of the API is that it not only provides
functionality to transmit and receive packets, but also

includes functions required when testing equipment.
For example, the API makes it simple to transmit
packets terminated with an EEP, and to determine the
end of packet marker type of received packets. It
simplifies the process of transmitting a stream of traffic
(for example, from a file), and receiving a stream of
traffic. If these streams were to include time-codes in
the middle of packets, the position of these time-codes
would be maintained by the API. This allows traffic
streams to be recorded accurately and replayed, so
multiple test runs will be consistent.

STAR-System is not only packed with features, it also
provides these features with very high performance and
low CPU usage. The graph below shows data rates and
CPU usage when transmitting and receiving packets of
various sizes on a 200 Mbits/s link. With packets as
small as 50 bytes in length, the data rate achieved is
close to the theoretical maximum of slightly less than
160 Mbits/s.

Figure 4-1 STAR-System performance

The API is provided with extensive searchable
documentation and example code for each API
function. Example test programs with source code are
included for each language supported.

4.1.2 Supporting Modules

STAR-System is a modular system. This reduces the
footprint of the system, which can be important where
memory or storage is at a premium. If validation of the
API is required, this also reduces the number of
functions which must be validated.

In addition to the core components of the system,
modules are provided to implement commonly
required features. For example, users working with the
Remote Memory Access Protocol can use the RMAP
Packet Library to simplify the building and interpreting
of RMAP packets.

4.1.3 LabVIEW

The LabVIEW software development environment (a
visual, dataflow programming language provided by
National Instruments Corporation) is supported by

STAR-System via a LabVIEW wrapper. Features
provided include transmitting and receiving SpaceWire
traffic, creating RMAP packets, and performing device
configuration. All functions provided by the STAR-
System C API can be accessed through the LabVIEW
wrapper.

The STAR-System LabVIEW wrapper provides
example VIs demonstrating typical use cases for the
STAR-System API. Examples provided include:

 Transmitting and receiving packets.
 Receiving time-codes and link events (speed

change/state change).
 Building and decoding RMAP packets.
 Getting hardware information.
 Error injection.
 Building routing tables.
 Setting link speeds.
 RMAP Target and Initiator.

The library has been designed to be intuitive to
LabVIEW users; with device access following the
“Open, Perform Action, Close” architecture, and
callback/notification functions implemented using
LabVIEW user events. Example LabVIEW source
code is shown in Figure 4-2.

Figure 4-2 Source code for setting precision transmit rate

of a Router Mk2S device

5 CONCLUSIONS

Outline requirements for SpaceWire equipment to fulfil
the needs of various test and development activities
have been provided. A range of SpaceWire test and
development equipment has been described that meets
these requirements. The full paper will provide further
information on the Brick MKIII device.

6 REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire,
Links, Nodes, Routers and Networks”, Issue 1,
European Cooperation for Space Data Standardization,
July 2008, available from http://www.ecss.nl.

[2] ECSS Standard ECSS-E-ST-50-52C, “SpaceWire –
Remote memory access protocol”, Issue 1, European
Cooperation for Space Data Standardization, 5 February
2010, available from http://www.ecss.nl.

http://www.ecss.nl/
http://www.ecss.nl/

