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ABSTRACT 

1 INTRODUCTION 

SpaceWire-D is a protocol that provides deterministic 
data delivery over an existing SpaceWire network [1]. 
It allows SpaceWire networks to be used for time-
critical avionics control applications and for 
asynchronous payload data handling. 

SpaceWire-D uses the SpaceWire Remote Memory 
Access Protocol (RMAP) [2] to provide the basic 
communication mechanism: transactions that can read 
or write to memory in a remote target node. These 
transactions are executed by an initiator, with the 
initiator sending the RMAP command, a target 
receiving, executing and replying to the command, and 
the initiator receiving the reply from the target, which 
contains any data read from the target or is an 
acknowledgement to a write command.  

To provide determinism the network bandwidth is split 
into a series of time-slots. One or more initiators are 
allowed to send a group of transactions in a particular 
time-slot, provided that transactions from different 
initiators do not use the same network resources, i.e. 
common SpaceWire links on the paths from the 
initiators to the target devices being accessed. The 
group of transactions executed in a particular time-slot 
must complete before the end of the time-slot, or a fault 
will be signalled. This restriction avoids a group of 
transactions from disrupting the transactions in the next 
time-slot, if they were to overrun their time-slot. 

2 PROTOCOL STACK 

The SpaceWire-D protocol stack is illustrated in Figure 
2-1. SpaceWire-D is an asymmetric set of protocols 
with one or more initiators sending or collecting 
information from one or more target devices. An 
initiator is typically a payload control processor. A 
target is typically an instrument, sensor or actuator. 
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Figure 2-1 SpaceWire-D Protocol Stack 

SpaceWire-D runs over existing SpaceWire networks 
with no modifications to existing SpaceWire routers. 
SpaceWire-D makes extensive use of the SpaceWire 
Remote Memory Access Protocol (RMAP). 
SpaceWire-D target devices are standard RMAP target 
devices.  

SpaceWire-D provides four principal services: static 
bus, dynamic bus, asynchronous bus and packet bus. 

 Static bus: Has a single slot associated to it. 
Accepts a single transaction group, one at a time, 
for execution in a specified slot. Provides a fully 
deterministic service. 

 Dynamic bus: Has one or more slots associated to 
it. Accepts up to two transactions groups, the first 
will be sent in the next slot associated with the 
dynamic bus and the second one in the slot after 
that. Has double buffering so once the first 
transaction group has been executed and the 
second one is waiting to execute, another 
transaction group can be loaded. Is not fully 
deterministic since a transaction group can execute 
in one of possibly several slots associated with the 
dynamic bus. 

 Asynchronous bus: Has one or more slots 
associated to it. Accepts individual transactions 
one at a time each with a priority setting. These 
transactions are stored in a queue with the highest 
priority transactions at the front. A transaction 
group to execute in the next slot for the 
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asynchronous bus is formed by taking transactions 
off the front of the queue, estimating their 
execution time, and forming a transaction group 
which will complete within the slot duration. This 
bus provides a prioritised means of 
asynchronously reading and writing to memory in 
the target devices associated with asynchronous 
bus, without upsetting the deterministic data 
delivery of static buses. 

 Packet bus: Has one or more slots associated to it. 
Accepts requests to send a packet to a particular 
target or to receive a packet from a target. These 
requests are converted into a series of RMAP 
transactions that provide the packet bus service 
without upsetting the deterministic data delivery of 
the static bus. 

3  HOW IT WORKS 

In this section the way in which SpaceWire-D works is 
described. 

3.1 Time-slots 
SpaceWire-D uses time-division multiplexing of the 
network resources to provide deterministic data 
delivery. Time is split into a repeating sequence of 
time-slots. In a time-slot access to the network 
resources is given to one initiator so that there is no 
conflict on the network. Two or more initiators may 
access the network in a single time-slot, provided that 
they do not use any of the same SpaceWire links on the 
network. 

The time-slots used in SpaceWire-D are illustrated in 
Figure 3-1. 
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Figure 3-1 Time-Slots 

A time-slot starts when a time-code is broadcast over 
the network and arrives at an initiator. It ends when the 
next time-code arrives. The time-slot is given the 
number of the time-code that starts the time-slot. There 
are therefore 64 time-slots, numbered 0 to 63. When 
time-slot 63 ends the sequence repeats again starting at 
time-slot 0. A time-slot is typically 1 ms to 20 ms in 
duration. 

To provide resilience against a missing time-code and 
alternative means of defining the time-slots is provided 
which uses a local time-counter synchronised to the 
broadcast time-codes. This is illustrated in Figure 3-2.  
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Figure 3-2 Time-Slots using a local time counter 

The time-counter is used to determine the start and end 
of each time-slot in an initiator. The time-counter is 
synchronised to incoming time-codes. If a time-code 
goes missing, the local time-counter will start the next 
time-slot. The missing time-code is reported to a 
network management application. Several time-codes 
may be lost before time-slot synchronisation is lost 
completely. 

3.2 Transaction 
SpaceWire-D sends and receives information using 
SpaceWire RMAP transactions. An initiator executes 
an RMAP transaction by sending an RMAP command 
to a target and receiving the reply from that target. 
Existing RMAP target devices can be used with 
SpaceWire-D without any modification. The RMAP 
transaction provides a means of reading, writing or 
read-modify-writing to memory in a remote target. 

3.3 Transaction Group 
In a single time-slot it is possible to execute hundreds 
of RMAP transactions, depending on the amount of 
data being transferred in those RMAP transactions. The 
transactions that are to be executed in a given time-slot 
are called a transaction group. A transaction group is 
executed in a time-slot. If a defined transaction group 
is executed in a particular time-slot, this provides fully 
deterministic data delivery. 

The transactions in a transaction group must all be 
completed before the end of the time-slot in which they 
are executed or they will start to affect traffic in other 
time-slots. When transaction groups are passed to 
SpaceWire-D for execution they are first checked to 
make sure that they are likely to complete execution in 
their designated time-slot. 

3.4 Multi-slots 
Suppose a SpaceWire network is operating at 200 
Mbits/s and the SpaceWire-D time-slot duration is set 
to 10 ms. The maximum amount of data that can be 
sent is 200 kbytes. If a camera that provides 1 Mbyte 
images is to be used as a target device in a SpaceWire-
D network a much larger time-slot will be required. 



Rather than increase the time-slot period, which may 

have been set to provide responsive determinism for 

other data transfers, SpaceWire-D can concatenate a 

number of adjacent time-slots into a multi-slot. Time-

slots and multi-slots are referred to generically as slots. 

A transaction group can be executed in a slot, i.e. time-

slot or multi-slot, provided that all the transactions in 

the group complete before the end of that slot. 

3.5 Static Bus 
The static bus is the simplest and most deterministic of 

the bus types that SpaceWire-D supports.  When a 

static bus is opened it is allocated a single slot only. A 

static bus accepts a transaction group from an initiator 

application and will send that group in the next 

occurrence of the time-slot allocated to the static bus. 

A static bus is given the number of the lowest number 

time-slot in its allocated slot. 

The operation of a static bus is illustrated in Figure 3-3. 
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Figure 3-3: Transactions on a static bus 

Once a static bus has been opened it can accept a 

transaction group for sending on that bus. It is called a 

bus because an initiator is master of the network for the 

duration of a time-slot that it has been allocated. It can 

access many target devices, but the initiator starts the 

transactions. 

In Figure 3-3, two static buses have been opened; one 

for time-slot 6 and one for time-slot 9. The user 

application loads the transaction group to be executed 

on these two static buses using the Load Static Bus 

primitives. When time-slot 6 starts, the transaction 

group loaded for static bus 6 is executed; the RMAP 

commands in the transaction group are sent to the 

various targets and the replies received. The target 

application is informed every time an RMAP command 

is executed on the target. The initiator is informed 

when the complete transaction group has finished 

execution. 

To support repeated access of sensor or housekeeping 

information a static bus can be set to repeat each time 

its allocated slot starts. This saves the user application 

having to reload the static bus with the same 

information repeatedly. If the repeating information 

does need to change, the user application can simply 

write the new transaction group into the static bus. 

3.6 Dynamic Bus 
The dynamic bus is similar to the static bus except that 

one or more slots can be allocated to a dynamic bus 

and two transaction groups are queued in the dynamic 

bus initiator; the current transaction group which will 

execute as soon as a time-slot allocated to the dynamic 

bus starts, and the next transaction group which 

becomes the current transaction group once the current 

transaction group has been executed. When a dynamic 

bus is opened it is associated with one or more slots. 

The operation of the dynamic bus is illustrated in 

Figure 3-4. 
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Figure 3-4: Transactions on a dynamic bus 

Once a dynamic bus has been opened the user 

application can load it with a transaction group for 

execution. Once loaded this group (Group A in Figure 

3-4) becomes the current group and is executed on the 

first slot to arrive of those allocated to the dynamic bus. 

If another transaction group is loaded (Group B), it 

becomes the next group and will become the current 

group, once the present current group (Group A) has 

been executed. 

A transaction group that is loaded into a dynamic bus is 

not executed in a specific slot, but will execute in the 



next slot allocated to the dynamic bus. This makes it 

less deterministic than the static bus. Repeating 

transactions cannot be used with a dynamic bus. 

3.7 Asynchronous Bus 

The asynchronous bus is for executing individual 

transactions. Transactions for an asynchronous bus are 

loaded into the bus singly and queued ready for 

execution in the next slot allocated to the bus. A 

priority can be applied to these transactions with a 

higher priority transaction being placed before lower 

priority ones in the queue. When a slot allocated to an 

asynchronous bus arrives, transactions are pulled from 

the queue to form a transaction group which is able to 

be executed within the time limits of the slot. These 

transactions are then executed. 

The operation of the asynchronous bus is illustrated in 

Figure 3-5. 
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Figure 3-5: Transactions on an asynchronous bus 

A series of individual transactions are loaded in to the 

asynchronous bus. These are placed on the transaction 

queue in priority order. When the next slot for the 

asynchronous bus arrives, the transactions are 

executed, starting with the highest priority transactions. 

3.8 Packet Bus 

The packet bus will be described in the full paper. 

3.9 Schedule 

The schedule is a means for coordinating the use of the 

SpaceWire network resources when multiple initiators 

are being used. There is a schedule table in each 

initiator which specifies which bus has access to the 

network. An example schedule is given in Figure 3-6. 
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Figure 3-6: Example schedule table 

Time-slot 0 is allocated to static bus 0. Similarly time-

slots 2, 4 and 61 are allocated static buses each of one 

time-slot duration. 

Time-slots 0 and 9 are allocated to dynamic bus 1. 

Time-slots 7, 10 and 62 are allocated to dynamic bus 7. 

Time-slot 3 is allocated to asynchronous bus 3, which 

is a single slot of one time-slot duration. Time-slots 5 

and 6 are allocated to asynchronous bus 5, which is a 

single slot of two time-slots duration. 

When a particular time-slot arrives, the bus associated 

with that time-slot in the schedule table is allowed to 

execute some transactions. 

When multiple initiators are being used the network 

resources (SpaceWire links) used in a particular time-

slot by a bus in one initiator must not be used by any 

other initiator in that same time-slot. It is the 

responsibility of the system engineer to ensure that this 

is the case. Scheduling tools, to help with the definition 

of buses and the allocation of buses to the schedule in 

each initiator, are being researched by the University of 

Dundee, 

4 FDIR 

Each SpaceWire-D initiator monitors the transactions it 

has initiated and ensures that they all complete before 

the end of the slot in which they were executed. If they 

fail to complete in time a fault is reported. RMAP 

errors can occur without a fault being reported. For 



example, if an RMAP command is sent to a target and 
this command is not authorised by the target, the 
RMAP reply will contain the “command not 
authorised” error code. This will be received at the 
initiator and the transaction will be considered 
executed, even though the reply contained an error 
code. This has not broken the SpaceWire-D protocol so 
no fault is reported. It is up to the user application to 
determine what it wants to do in response to the error 
code received. 

It is important that every transaction group completes 
in its allocated time-slot. If it doesn’t, a fault will be 
reported. To prevent inadvertent faults, SpaceWire-D 
checks each transaction and transaction group it is 
given for execution on a particular bus to ensure that it 
is for a target associated with the bus, and that it will 
execute within the duration of the slot allocated to the 
bus. This error prevention mechanism means that the 
application will be told of any errors with the 
transactions and transaction groups. Erroneous 
transactions and transaction groups will not be 
executed, preventing faults occurring on the network. 
To check the target and anticipated execution time, the 
initiator uses information about the target provided 
when a bus was opened, together with transaction data 
length information from each transaction. 

Time-codes are crucial for the operation of SpaceWire-
D, so it is important to monitor them for errors, This 
can be done in the initiators by applying early and late 
watchdog timers for each time-code as illustrated in 
Figure 4-1. If the time-code arrives outside the time-
code window or is missing altogether, a fault can be 
reported to the user application, which can take 
appropriate action. 
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Figure 4-1 Time-Code Watchdog 

5 CURRENT STATUS 

The initial concept for SpaceWire-D was developed by 
University of Dundee [3] [4] [5], who are now writing 
the draft standard specification under ESA contract. An 
early version of SpaceWire-D developed in Japan is 
being used in missions like Hayabusa 2 [6][7]. 

The requirements for SpaceWire-D have been gathered 
with inputs from Airbus Defence GmbH and Space and 

Thales Alenia Space France. A draft SpaceWire-D 
standard specification has been written.  

The final paper will provide updated information on 
the status of SpaceWire-D, including results of initial 
implementation. 

6 CONCLUSIONS 

SpaceWire-D is designed to support both avionics and 
payload data-handling applications on a single 
network. Avionics applications like attitude and orbit 
control require deterministic data delivery. 
Asynchronous payload data must not interfere with the 
deterministic delivery of time-critical data. SpaceWire-
D uses time-division multiplexing to share the network 
resources between several initiators. It provides 
deterministic data delivery using existing SpaceWire 
networks and RMAP target devices. It supports 
common time-critical avionics and asynchronous 
payload data-handling on a single SpaceWire network. 
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