
SpaceWire-D: Deterministic Data Delivery over SpaceWire

Steve Parkes(1), David Gibson(1), and Albert Ferrer(2)

(1)
University of Dundee, Space Technology Centre, Dundee, DD1 4HN, Scotland, UK.

Email: sparkes@computing.dundee.ac.uk; davidgibson@computing.dundee.ac.uk

(2)
STAR-Dundee Ltd, STAR House, 166 Nethergate, Dundee, DD1 4EE, Scotland, UK.

Email: albert.ferrer@star-dundee.com;

ABSTRACT

1 INTRODUCTION

SpaceWire-D is a protocol that provides deterministic
data delivery over an existing SpaceWire network [1].
It allows SpaceWire networks to be used for time-
critical avionics control applications and for
asynchronous payload data handling.

SpaceWire-D uses the SpaceWire Remote Memory
Access Protocol (RMAP) [2] to provide the basic
communication mechanism: transactions that can read
or write to memory in a remote target node. These
transactions are executed by an initiator, with the
initiator sending the RMAP command, a target
receiving, executing and replying to the command, and
the initiator receiving the reply from the target, which
contains any data read from the target or is an
acknowledgement to a write command.

To provide determinism the network bandwidth is split
into a series of time-slots. One or more initiators are
allowed to send a group of transactions in a particular
time-slot, provided that transactions from different
initiators do not use the same network resources, i.e.
common SpaceWire links on the paths from the
initiators to the target devices being accessed. The
group of transactions executed in a particular time-slot
must complete before the end of the time-slot, or a fault
will be signalled. This restriction avoids a group of
transactions from disrupting the transactions in the next
time-slot, if they were to overrun their time-slot.

2 PROTOCOL STACK

The SpaceWire-D protocol stack is illustrated in Figure
2-1. SpaceWire-D is an asymmetric set of protocols
with one or more initiators sending or collecting
information from one or more target devices. An
initiator is typically a payload control processor. A
target is typically an instrument, sensor or actuator.

SpaceWire

SpaceWire-D

User Application

SpaceWire

RMAP
Initiator

Static Bus
Initiator

User
Application

SpaceWire

RMAP
Target

Static Bus
Target

User Application

Packet Bus
Initiator

Async Bus
Target

Initiator Target

Network

Dynamic Bus
Initiator

Dynamic Bus
Target

Packet Bus
Target

Async Bus
Initiator

Figure 2-1 SpaceWire-D Protocol Stack

SpaceWire-D runs over existing SpaceWire networks
with no modifications to existing SpaceWire routers.
SpaceWire-D makes extensive use of the SpaceWire
Remote Memory Access Protocol (RMAP).
SpaceWire-D target devices are standard RMAP target
devices.

SpaceWire-D provides four principal services: static
bus, dynamic bus, asynchronous bus and packet bus.

 Static bus: Has a single slot associated to it.
Accepts a single transaction group, one at a time,
for execution in a specified slot. Provides a fully
deterministic service.

 Dynamic bus: Has one or more slots associated to
it. Accepts up to two transactions groups, the first
will be sent in the next slot associated with the
dynamic bus and the second one in the slot after
that. Has double buffering so once the first
transaction group has been executed and the
second one is waiting to execute, another
transaction group can be loaded. Is not fully
deterministic since a transaction group can execute
in one of possibly several slots associated with the
dynamic bus.

 Asynchronous bus: Has one or more slots
associated to it. Accepts individual transactions
one at a time each with a priority setting. These
transactions are stored in a queue with the highest
priority transactions at the front. A transaction
group to execute in the next slot for the

Programme and Abstracts Book of the DASIA 2014 Conference
Warsaw, Poland, 3-5 June 2014

mailto:sparkes@computing.dundee.ac.uk
mailto:davidgibson@computing.dundee.ac.uk
mailto:albert.ferrer@star-dundee.com

asynchronous bus is formed by taking transactions
off the front of the queue, estimating their
execution time, and forming a transaction group
which will complete within the slot duration. This
bus provides a prioritised means of
asynchronously reading and writing to memory in
the target devices associated with asynchronous
bus, without upsetting the deterministic data
delivery of static buses.

 Packet bus: Has one or more slots associated to it.
Accepts requests to send a packet to a particular
target or to receive a packet from a target. These
requests are converted into a series of RMAP
transactions that provide the packet bus service
without upsetting the deterministic data delivery of
the static bus.

3 HOW IT WORKS

In this section the way in which SpaceWire-D works is
described.

3.1 Time-slots
SpaceWire-D uses time-division multiplexing of the
network resources to provide deterministic data
delivery. Time is split into a repeating sequence of
time-slots. In a time-slot access to the network
resources is given to one initiator so that there is no
conflict on the network. Two or more initiators may
access the network in a single time-slot, provided that
they do not use any of the same SpaceWire links on the
network.

The time-slots used in SpaceWire-D are illustrated in
Figure 3-1.

Time-Slot 6 Time-Slot 7

Time-Code 6 Time-Code 7 Time-Code 8

Figure 3-1 Time-Slots

A time-slot starts when a time-code is broadcast over
the network and arrives at an initiator. It ends when the
next time-code arrives. The time-slot is given the
number of the time-code that starts the time-slot. There
are therefore 64 time-slots, numbered 0 to 63. When
time-slot 63 ends the sequence repeats again starting at
time-slot 0. A time-slot is typically 1 ms to 20 ms in
duration.

To provide resilience against a missing time-code and
alternative means of defining the time-slots is provided
which uses a local time-counter synchronised to the
broadcast time-codes. This is illustrated in Figure 3-2.

Time-Slot 6 Time-Slot 7

Arrival of
Time-Code 6

Time-Code 6
Expected

Time-Code 7
Expected

Time-Code 8
Expected

Local
Time

Counter
Value

Arrival of
Time-Code 7

Missing
Time-Code

Figure 3-2 Time-Slots using a local time counter

The time-counter is used to determine the start and end
of each time-slot in an initiator. The time-counter is
synchronised to incoming time-codes. If a time-code
goes missing, the local time-counter will start the next
time-slot. The missing time-code is reported to a
network management application. Several time-codes
may be lost before time-slot synchronisation is lost
completely.

3.2 Transaction
SpaceWire-D sends and receives information using
SpaceWire RMAP transactions. An initiator executes
an RMAP transaction by sending an RMAP command
to a target and receiving the reply from that target.
Existing RMAP target devices can be used with
SpaceWire-D without any modification. The RMAP
transaction provides a means of reading, writing or
read-modify-writing to memory in a remote target.

3.3 Transaction Group
In a single time-slot it is possible to execute hundreds
of RMAP transactions, depending on the amount of
data being transferred in those RMAP transactions. The
transactions that are to be executed in a given time-slot
are called a transaction group. A transaction group is
executed in a time-slot. If a defined transaction group
is executed in a particular time-slot, this provides fully
deterministic data delivery.

The transactions in a transaction group must all be
completed before the end of the time-slot in which they
are executed or they will start to affect traffic in other
time-slots. When transaction groups are passed to
SpaceWire-D for execution they are first checked to
make sure that they are likely to complete execution in
their designated time-slot.

3.4 Multi-slots
Suppose a SpaceWire network is operating at 200
Mbits/s and the SpaceWire-D time-slot duration is set
to 10 ms. The maximum amount of data that can be
sent is 200 kbytes. If a camera that provides 1 Mbyte
images is to be used as a target device in a SpaceWire-
D network a much larger time-slot will be required.

Rather than increase the time-slot period, which may

have been set to provide responsive determinism for

other data transfers, SpaceWire-D can concatenate a

number of adjacent time-slots into a multi-slot. Time-

slots and multi-slots are referred to generically as slots.

A transaction group can be executed in a slot, i.e. time-

slot or multi-slot, provided that all the transactions in

the group complete before the end of that slot.

3.5 Static Bus
The static bus is the simplest and most deterministic of

the bus types that SpaceWire-D supports. When a

static bus is opened it is allocated a single slot only. A

static bus accepts a transaction group from an initiator

application and will send that group in the next

occurrence of the time-slot allocated to the static bus.

A static bus is given the number of the lowest number

time-slot in its allocated slot.

The operation of a static bus is illustrated in Figure 3-3.

3. Load Static Bus (TS-6)

SpaceWire-D
Initiator

SpaceWire-D
Target

Initiator
Application

Target
Application

4. Load Static Bus Accept

5. RMAP Command

7. Data Read or Write8. RMAP Reply

TS-6

TS-7

1. Load Static Bus (TS-9)

2. Load Static Bus Accept

9. Data Read or Write
10. RMAP Reply

11. Static Bus Complete

6. RMAP Command

Figure 3-3: Transactions on a static bus

Once a static bus has been opened it can accept a

transaction group for sending on that bus. It is called a

bus because an initiator is master of the network for the

duration of a time-slot that it has been allocated. It can

access many target devices, but the initiator starts the

transactions.

In Figure 3-3, two static buses have been opened; one

for time-slot 6 and one for time-slot 9. The user

application loads the transaction group to be executed

on these two static buses using the Load Static Bus

primitives. When time-slot 6 starts, the transaction

group loaded for static bus 6 is executed; the RMAP

commands in the transaction group are sent to the

various targets and the replies received. The target

application is informed every time an RMAP command

is executed on the target. The initiator is informed

when the complete transaction group has finished

execution.

To support repeated access of sensor or housekeeping

information a static bus can be set to repeat each time

its allocated slot starts. This saves the user application

having to reload the static bus with the same

information repeatedly. If the repeating information

does need to change, the user application can simply

write the new transaction group into the static bus.

3.6 Dynamic Bus
The dynamic bus is similar to the static bus except that

one or more slots can be allocated to a dynamic bus

and two transaction groups are queued in the dynamic

bus initiator; the current transaction group which will

execute as soon as a time-slot allocated to the dynamic

bus starts, and the next transaction group which

becomes the current transaction group once the current

transaction group has been executed. When a dynamic

bus is opened it is associated with one or more slots.

The operation of the dynamic bus is illustrated in

Figure 3-4.

3. Load Dynamic Bus

SpaceWire -D
Initiator

SpaceWire -D
Target

Initiator
Application

Target
Application

4. Load Dynamic Bus Accept

5. RMAP Command

7. Data Read or Write
8. RMAP Reply

TS -6

TS -7

1. Load Dynamic Bus

2. Load Dynamic Bus Accept

9. Data Read or Write
10. RMAP Reply

11. Dynamic Bus Complete

TS -8

TS -9

TS - 10

12. RMAP Command

13. Data Read or Write

14 . RMAP Reply

15. Dynamic Bus Complete

Transaction Group A
loaded, becomes
Current Group

Transaction Group B
loaded, becomes

Next Group

Current Group
(Transaction Group A)

being sent

6. RMAP Command

Current Group
(Transaction Group B)

being sent

Current Group
(Transaction Group A)

complete.

Transaction Group B
complete

Next Group becomes
Current Group

Next Group becomes
Current Group

Figure 3-4: Transactions on a dynamic bus

Once a dynamic bus has been opened the user

application can load it with a transaction group for

execution. Once loaded this group (Group A in Figure

3-4) becomes the current group and is executed on the

first slot to arrive of those allocated to the dynamic bus.

If another transaction group is loaded (Group B), it

becomes the next group and will become the current

group, once the present current group (Group A) has

been executed.

A transaction group that is loaded into a dynamic bus is

not executed in a specific slot, but will execute in the

next slot allocated to the dynamic bus. This makes it

less deterministic than the static bus. Repeating

transactions cannot be used with a dynamic bus.

3.7 Asynchronous Bus

The asynchronous bus is for executing individual

transactions. Transactions for an asynchronous bus are

loaded into the bus singly and queued ready for

execution in the next slot allocated to the bus. A

priority can be applied to these transactions with a

higher priority transaction being placed before lower

priority ones in the queue. When a slot allocated to an

asynchronous bus arrives, transactions are pulled from

the queue to form a transaction group which is able to

be executed within the time limits of the slot. These

transactions are then executed.

The operation of the asynchronous bus is illustrated in

Figure 3-5.

3. Load Async Bus

SpaceWire-D

Initiator

SpaceWire-D

Target

Initiator

Application

Target

Application

4. Load Async Bus Accept

7. RMAP Command

8. Data Read or Write

9. RMAP Reply

TS-6

TS-7

1. Load Async Bus

2. Load Async Bus Accept

10. Transaction C Complete

Transaction A loaded,

with priority 3

Transaction B loaded

with priority 3

Transaction C, highest

priority, executed first

5. Load Async Bus

6. Load Async Bus Accept

Transaction C loaded

with priority 1 (highest

priority)

11. RMAP Command

12. Data Read or Write

13. RMAP Reply

14. Transaction A Complete

Transaction A

executed, first

transaction at priority 3

15. RMAP Command

16. Data Read or Write

17. RMAP Reply

18. Transaction B Complete

Transaction B

executed, second

transaction at priority 3

Next group of

transactions becomes

current transaction

group

Next group of

transactions becomes

current transaction

group

Figure 3-5: Transactions on an asynchronous bus

A series of individual transactions are loaded in to the

asynchronous bus. These are placed on the transaction

queue in priority order. When the next slot for the

asynchronous bus arrives, the transactions are

executed, starting with the highest priority transactions.

3.8 Packet Bus

The packet bus will be described in the full paper.

3.9 Schedule

The schedule is a means for coordinating the use of the

SpaceWire network resources when multiple initiators

are being used. There is a schedule table in each

initiator which specifies which bus has access to the

network. An example schedule is given in Figure 3-6.

Time-Slot

0

Bus

Static 0

1

2

Dynamic 1

Static 2

3

4

Async 3

Static 4

5

6

Async 5

Async 5

7

8

Dynamic 7

Empty

9

10

Dynamic 1

Dynamic 7

…

61

…

Static 61

62

63

Dynamic 7

Static 63

Figure 3-6: Example schedule table

Time-slot 0 is allocated to static bus 0. Similarly time-

slots 2, 4 and 61 are allocated static buses each of one

time-slot duration.

Time-slots 0 and 9 are allocated to dynamic bus 1.

Time-slots 7, 10 and 62 are allocated to dynamic bus 7.

Time-slot 3 is allocated to asynchronous bus 3, which

is a single slot of one time-slot duration. Time-slots 5

and 6 are allocated to asynchronous bus 5, which is a

single slot of two time-slots duration.

When a particular time-slot arrives, the bus associated

with that time-slot in the schedule table is allowed to

execute some transactions.

When multiple initiators are being used the network

resources (SpaceWire links) used in a particular time-

slot by a bus in one initiator must not be used by any

other initiator in that same time-slot. It is the

responsibility of the system engineer to ensure that this

is the case. Scheduling tools, to help with the definition

of buses and the allocation of buses to the schedule in

each initiator, are being researched by the University of

Dundee,

4 FDIR

Each SpaceWire-D initiator monitors the transactions it

has initiated and ensures that they all complete before

the end of the slot in which they were executed. If they

fail to complete in time a fault is reported. RMAP

errors can occur without a fault being reported. For

example, if an RMAP command is sent to a target and
this command is not authorised by the target, the
RMAP reply will contain the “command not
authorised” error code. This will be received at the
initiator and the transaction will be considered
executed, even though the reply contained an error
code. This has not broken the SpaceWire-D protocol so
no fault is reported. It is up to the user application to
determine what it wants to do in response to the error
code received.

It is important that every transaction group completes
in its allocated time-slot. If it doesn’t, a fault will be
reported. To prevent inadvertent faults, SpaceWire-D
checks each transaction and transaction group it is
given for execution on a particular bus to ensure that it
is for a target associated with the bus, and that it will
execute within the duration of the slot allocated to the
bus. This error prevention mechanism means that the
application will be told of any errors with the
transactions and transaction groups. Erroneous
transactions and transaction groups will not be
executed, preventing faults occurring on the network.
To check the target and anticipated execution time, the
initiator uses information about the target provided
when a bus was opened, together with transaction data
length information from each transaction.

Time-codes are crucial for the operation of SpaceWire-
D, so it is important to monitor them for errors, This
can be done in the initiators by applying early and late
watchdog timers for each time-code as illustrated in
Figure 4-1. If the time-code arrives outside the time-
code window or is missing altogether, a fault can be
reported to the user application, which can take
appropriate action.

Time-Slot 6 Time-Slot 7

Time-Code 6 Time-Code 7

Start
watchdog

timers

Time-code
window

Missing
time-code
detected

Early watchdog

Late watchdog

Figure 4-1 Time-Code Watchdog

5 CURRENT STATUS

The initial concept for SpaceWire-D was developed by
University of Dundee [3] [4] [5], who are now writing
the draft standard specification under ESA contract. An
early version of SpaceWire-D developed in Japan is
being used in missions like Hayabusa 2 [6][7].

The requirements for SpaceWire-D have been gathered
with inputs from Airbus Defence GmbH and Space and

Thales Alenia Space France. A draft SpaceWire-D
standard specification has been written.

The final paper will provide updated information on
the status of SpaceWire-D, including results of initial
implementation.

6 CONCLUSIONS

SpaceWire-D is designed to support both avionics and
payload data-handling applications on a single
network. Avionics applications like attitude and orbit
control require deterministic data delivery.
Asynchronous payload data must not interfere with the
deterministic delivery of time-critical data. SpaceWire-
D uses time-division multiplexing to share the network
resources between several initiators. It provides
deterministic data delivery using existing SpaceWire
networks and RMAP target devices. It supports
common time-critical avionics and asynchronous
payload data-handling on a single SpaceWire network.

7 ACKNOWLEDGMENTS

The research leading to these results has received
funding the European Space Agency under ESA
contract number 4000107346/12/NL/LvH/fe. We
would also like to thank David Jameux the ESA project
manager for the SpaceWire-D related activities for his
help.

8 REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire,
Links, Nodes, Routers and Networks”, Issue 1,
European Cooperation for Space Data Standardization,
July 2008, available from http://www.ecss.nl.

[2] ECSS Standard ECSS-E-ST-50-52C, “SpaceWire –
Remote memory access protocol”, Issue 1, European
Cooperation for Space Data Standardization, 5 February
2010, available from http://www.ecss.nl.

[3] S. Parkes and A. Ferrer Florit, “SpaceWire-D
Deterministic Control and Data Delivery Over
SpaceWire Networks”, Draft B, April 2010, available
from http://spacewire.esa.int/WG/SpaceWire/

[4] S. Parkes, A Ferrer, S. Mills, A. Mason, “SpaceWire-D:
Deterministic Data Delivery with SpaceWire”,
International SpaceWire Conference, St Petersburg,
Russia, June 2010.

[5] S. Parkes, A. Ferrer Florit, A. Gonzalez Villafranca and
C. McClements, “SpaceWire-D Deterministic Control
and Data Delivery Over SpaceWire Networks”, Draft C,
April 2012, available from
http://spacewire.esa.int/WG/SpaceWire/

[6] Y. Chen, M. Takada, R. Kurachi, H. Takada,Satoko
Kawakami, Yasuhiro Takeda, Hiroki Hihara, Ryu
Funase, Tetsuya Masuda, Masatoshi Ebara and Takahiro

http://www.ecss.nl/
http://www.ecss.nl/
http://spacewire.esa.int/WG/SpaceWire/
http://spacewire.esa.int/WG/SpaceWire/

Yamada, “Real-time Data Recording System with
SpaceWire for Asteroid Sample Return Mission
HAYABUSA2”, International SpaceWire Conference,
Gothenburg, 2013.

[7] Mitsutaka Takada, Hiroaki Takada, Yang Chen,
Takayuki Yuasa and Tadayuki Takahashi,
“Development of Software Platform Supporting a
Protocol for Guaranteeing the Real-Time Property of
SpaceWire”, International SpaceWire Conference,
Gothenburg, 2013.

