An RTEMS Port for the AT6981 SpaceWire-Enabled

Processor : Features and Performance
Onboard Equipment and Software, Short Paper

David Paterson

STAR-Dundee Ltd.
Dundee, UK
david.paterson@star-dundee.com

Abstract— The Atmel AT6981 is a complex system-on-chip
based on a SPARC LEON2-FT core, and which provides a
number of peripheral devices including three multi-function
SpaceWire engines and a router.

The RTEMS real-time operating system is widely used in
spacecraft systems in many roles. Its long history and open
source availability make it an ideal choice for many applications.
RTEMS has already been ported to many platforms, including
some based on the SPARC LEON?2 processor.

The process of porting RTEMS to the AT6981 is described,
and the performance, both for general data processing and for
SpaceWire traffic handling, is examined.

Index Terms— Relevant indexing terms: SpaceWire,
Spacecraft Electronics, Real-Time Operating System, RTEMS.

1. INTRODUCTION

The requirements for spacecraft on-board data handling are
continually increasing in terms of demands on both processing
power and network bandwidth. This has driven the
development of ever more powerful and capable data
processors and network controllers.

The Atmel AT6981 [1] combines a high-performance,
fault-tolerant processor with multiple SpaceWire engines and a
SpaceWire router, providing both data processing and network
control in a single package. The inclusion of on-chip memory
and a range of other peripherals and network interfaces make it
a highly capable device, suitable for use in a wide range of
applications.

Along with the requirements for increased processing
capabilities, there is also a need for a reliable software
environment to support real-time scheduling of the data
handling tasks. The RTEMS operating system is an ideal
candidate for this role, having proven its reliability and
usefulness in use on many missions, as well as having been
widely adopted in non-spaceflight applications.

Although RTEMS has been ported to LEON2-based
platforms, each target system has a different configuration, so

David Gibson, Steve Parkes

Space Technology Centre
School of Computing
University of Dundee
Dundee, UK
davidgibson@computing.dundee.ac.uk,
sparkes@computing.dundee.ac.uk

an AT6981-specific port is required in order to make full use of
the device’s capabilities. Porting RTEMS essentially requires
the development of a target-specific Board Support Package
(BSP) together with additional device drivers for the target’s
peripherals, and these are integrated into the RTEMS source
tree in order to build the target-specific version.

II. THE AT6981 SYSTEM-ON-CHIP

Based on a SPARC V8 LEON2-FT processor running at
200 MHz, the AT6981 is ideally suited for SpaceWire-based
applications with the inclusion of three powerful and flexible
SpaceWire engines. Each engine contains an RMAP initiator,
RMAP target and three general-purpose transmit/receive DMA
channels. These SpaceWire engines are connected to a
SpaceWire router which has eight external ports, providing
extensive network connectivity.

Additionally, the AT6981 includes up to 1 MByte of on-
chip EDAC-protected SRAM, controllers for CAN, MIL-STD-
1553 and Ethernet, as well as general purpose 1/O, UARTS,
timers and other commonly-required interfaces.

A diagram of the AT6981 is shown below in Figure 1.

.—>| Debug SpW ll'

SpW Engine
=
P neing Router ["
SpW Engine
Switch

CAN

e [N
'—bl MIL-STD-1553 L
4—>| Ethernet L

Debug Port

]

SPARCV8 / FPU
|-Cache | D-Cache

|

Internal SRAM 1

Internal SRAM 2

Internal SRAM 3

Internal SRAM 4

External Memory GPIO, UARTS,
Interface: Timers
[t il i
PROM, SRAM, ADC / DAC,
SDRAM, DDRx PWM, SPI, TWI

Fig. 1 — AT6981 Functional Block Diagram

257

The SpaceWire subsystem of the AT6981 is built around
three highly capable, semi-autonomous engines which can
offload much of the work involved in sending and receiving
SpaceWire traffic from the main processor.

A diagram of the SpaceWire subsystem is shown below in
Figure 2.

SpaceWire Engine 3 |'—‘ s
b
- =
RMAP Spw
Target Router PR
AHB RMAP Protocol
ke Initiator Multiplexer/ [
Interface ,
Demultiplexer
DMA Channel b
]
(x3)
Time-code
Controller

Fig. 2 — AT6981 SpaceWire Subsystem

SpaceWire Engine 2

SpaceWire Engine 1

The SpaceWire router has three internal ports and eight
external ports connected through a switch matrix which allows
multiple simultaneous connections between inputs and outputs.

The router is also connected to a time-code controller
which indicates received time-codes, and can generate time-
codes based on internal counters, hardware interrupts or on
command from the processor. The time-code controller also
handles and can generate distributed interrupts.

For packets being transmitted, the protocol multiplexer/
demultiplexer selects packets to be sent to the router, using a
fair arbitration scheme. For received packets, the first four
bytes of each packet are checked against configurable patterns
and masks to determine the correct destination — RMAP target,
RMAP initiator, or one of the three DMA channels.

The RMAP target accepts RMAP commands from a remote
system, performs read or write operations over the AHB bus to
local memory, and optionally returns a reply packet. The target
supports all RMAP commands, and includes a 16 byte buffer
for verified write commands.

The RMAP initiator transmits RMAP commands to read or
write memory or registers on a remote system, transferring data
to or from local memory via the AHB bus. The initiator is
controlled by a table of transaction requests stored in memory,
allowing it to transmit multiple commands and validate replies
to them without processor intervention.

The three DMA channels can each transmit and receive
SpaceWire packets from or to local memory. Transmitted
packets can consist of one or more data chunks, allowing for
separate storage of packet headers, while received packets are
stored contiguously in memory. As with the RMAP initiator,
transmit and receive operations are controlled by configuration
tables, minimising processor overhead.

The DMA channels can also transmit and receive RMAP
[2] and PUS [3] packets, using hardware CRC-8 and CRC-16
computation respectively.

With three identical SpaceWire engines, and eight external
ports from the router to access the spacecraft’s on-board

network, the AT6981 provides a very high level of capability
for data handling. The ability of these engines to operate
autonomously means that this is achieved with minimal load on
the main processor.

III. THE RTEMS REAL-TIME OPERATING SYSTEM

The RTEMS operating system has been designed
specifically for use in real-time embedded environments,
providing a full range of essential support features for real-time
software, including mission-critical and safety-critical
applications.

RTEMS has been under continuous development since the
late 1980’s, and has evolved over that time into a highly
reliable and capable system. It has been used in a wide range
of application areas, such as networking, automotive, medical,
hi-fi systems, particle accelerators and, most importantly,
spacecraft systems [4].

Real-time systems are differentiated from other software
applications by the requirement that they must respond to
events within specified time constraints — “A real-time system
is one whose logical correctness is based on both the
correctness of the outputs and their timeliness.” [5].

Real-time requirements may be divided into two broad
categories :-

e Soft real-time — in which a missed deadline does not
compromise the integrity of the system or result in a
catastrophic event.

e Hard real-time — in which a missed deadline causes the
work performed to have no value or to result in a
catastrophic event.

RTEMS is designed to handle both of these types of
constraint, and implements a number of different task
scheduling options to allow for flexibility in system design, and
for both hard and soft real-time tasks, and variations of them,
to run in the same system.

The RTEMS system is structured using a layered approach,
as show in Figure 3.

RPC/

telnetd Remote POSIX Compliant
XOR culs

CORBA te I
| Debugging Filesystem

ftpd hitpd Addeon Libraries || (MieroWindows) [~= ((mes) (Tares)

SNMP fp

(‘opencur) Adag5 (pEVFS) (FAT)

(‘2lib) (readiine)

DHCP ICMP PPP

BOOTP ‘

D) (onaT) (res)

) (Lua)

2
\‘5
g
s

(T NFS T\ (TTFTP
(_client) {_ciient _

(‘picaTk) Classic’
2 ‘ AP |
Bindings

1l

2

BSD TCP/IP Stack

(7o) (rewsos) || “ramox) i)
—— N J _client _

Performance
SAPI ‘ Classic AP POSIX API ‘ Monitoring AP1 ‘ Shell

Supercore
(~ Time
Management |

Board Support Package

“Memory)

| Scneauer | ‘ Allocation | | Libcru ‘7@7‘

Specific

‘ Architecture ‘ ‘

| (Communications T LibBSP
Port

& Synchronization Shared ‘

Hardware D

Fig. 3— RTEMS Architecture

Threads | BSP LibChip |

258

Although the architecture diagram shows a large number of
components, the configuration mechanisms invoked when
building an RTEMS system ensure that unused parts of the
code base are not included in the final executable.

A number of APIs are available, including a POSIX
compliant API supporting a large part of POSIX 1003.1b, such
as process and thread creation and control functions and object
types (semaphores, mutexes, condition variables etc.), file and
directory management and memory management.

At the lowest level of the RTEMS architecture, the
interface to the target hardware is managed through the Board
Support Package, and this is discussed in more detail in the
next section.

IV. PORTING RTEMS TO THE AT6981

RTEMS is already in widespread use for many spaceflight
applications, and is seen as a reliable and easy-to-use operating
system environment for the implementation of flight software.
Porting RTEMS to the AT6981 extends the range of devices
which are supported, and provides a very capable hardware-
software combination for many on-board data handling and
communications applications.

As stated previously, RTEMS has been ported to the
LEON2 in some basic configurations. However, in order to
make full use of the features of the AT6981, a more complete,
target-specific port was needed. This provides not only the
basic integration of the processor into RTEMS, but also drivers
for the built-in peripheral devices.

The first fundamental step in the process of porting
RTEMS to any new target is identifying which components
need to be developed, and which parts of existing ports, or
parts of “standard RTEMS” can be used :-

e Does a BSP for this board exist?
e Does a BSP for a similar board exist?
e [sthe board’s CPU supported?

In this case, although the CPU (SPARC LEON2) is
supported, no really similar board or device has yet been
ported, so only some basic, shared interrupt handling code
could be used. More of the common code from RTEMS,
mainly related to system initialisation, could be included, but
most of the BSP would have to be developed “from scratch”
(albeit, based on the design and structure of other, similar
BSPs).

For an initial, basic BSP, a small number of modules must
be implemented :-

Initialisation (board start-up)
Clock driver

Console driver

Timer driver (optional)

The initialisation code is responsible for ensuring that the
processor board is correctly initialised following a system
power-on or reset. Registers and memory areas are set to

known states, the stack is set up and interrupts cleared to
ensure correct and reliable operation of the operating system
and the application software.

The clock driver provides a reliable time reference to the
RTEMS kernel, so that all primitives that require a clock tick
work correctly.

The console driver, effectively a UART driver, is primarily
for use in debugging and for system status report messages.

The timer driver is used by timing and benchmark tests, and
although optional in the basic BSP, can be useful in
determining system performance, and identifying areas which
may need optimisation.

Once the basic BSP had been implemented and tested,
confirming that RTEMS was operating correctly, the next step
was to develop drivers for the peripheral devices on the
AT6981, beginning with the SpaceWire subsystem.

In order to simplify the API for users of this feature, it was
decided to write two separate device drivers, one for DMA
channel management, and one for the RMAP targets and
initiators. This separation also reflects the fact that these parts
of each engine can operate independently.

The structure of an RTEMS device driver is relatively
simple, and involves implementing a standard set of device
operations — open, close, read, write and control, which map
directly to the API functions typically available in most high-
level language support libraries. Additionally, an initialisation
function must be provided, and this is called during the
RTEMS start-up sequence to carry out any device-specific
initialisation which might be required.

At present, only the SpaceWire device drivers have been
written, but additional drivers for other peripherals will be
added in the future.

V. PERFORMANCE

The testing of the RTEMS port was carried out on the
STAR-Dundee AT6981 Prototype Card which contains an
FPGA into which is programmed the LEON2 core, 128 KBytes
of on-chip SRAM, the SpaceWire subsystem (as shown in
Figure 2) and 256 MByte of DRAM. The AT6981 Prototype
Card is shown in figure 4.

Fig.4 — STAR-Dundee AT6981 Prototype Card

259

The target clock speed for the production versions of the
AT6981 will be 200 MHz, which should provide at least 150
MIPS Dhrystone performance, and at least 40 MFLOPS
Whetstone performance. = However, the Prototype card
processor clock speed is limited to 30 MHz, so the measured
performance is expected to be approximately one-sixth of the
production device.

The SpaceWire clock on the prototype card runs at the full
200 MHz, so link speeds of up to 200 Mbit/s are supported.

Testing is still ongoing, but it should be possible to transmit
and receive packets at the maximum data rate via all three
SpaceWire engines simultaneously, provided they are routed
through different external ports. The autonomous operation of
the engines should require minimal processor overhead in
handling these transactions, so processor performance is not
expected to be a limiting factor in normal operation.

Final, measured performance figures will be given in the
oral presentation of this paper.

VI. CONCLUSIONS

The AT6981 provides a high-performance system-on-chip
solution to the ever-increasing demands for on-board data
processing and network bandwidth. The flexibility and
autonomous nature of the three SpaceWire engines allows for
its use in a wide range of network configurations and operating
modes.

RTEMS has already gained wide acceptance for use as an
environment for spacecraft software, and porting RTEMS to
the AT6981 extends the range of hardware which supports it.
This will provide additional options to designers and
developers of on-board data handling systems, providing a
reliable platform on which to implement any required
application software.

The open-source nature of RTEMS makes it relatively easy
to configure, and to port to new target hardware. Although the
AT6981 port of RTEMS currently provides only a basic BSP
and drivers for the SpaceWire engines, additional drivers will
be developed in the future, increasing the usability of this
versatile hardware / software combination.

REFERENCES

[1] “Atmel Space Rad-Hard Processors”
AEROSpaceRadHardProcessor E_ A4 052013.

[2] ECSS-E-ST-50-52C, “SpaceWire — Remote Memory Access
Protocol”, European Cooperation for Space Data
Standardization, February 2010

[3] ECSS-E-ST-70-41A “Ground Systems and Operations —
Telemetry and Telecommand Packet Utilization”, European
Cooperation for Space Data Standardization, January 2003

[4] “RTEMS Applications”, RTEMS Wiki -
http://www.rtems.org/wiki/index.php/RTEMS Applications

Atmel-41005B-

[5] Phillip A. Laplante, “Real-Time Systems Design and Analysis”,
Third Edition, John Wiley & Sons / IEEE Press, 2004

260

