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Abstract—SpaceWire-D is a deterministic extension to the
SpaceWire protocol designed to satisfy hard real-time constraints
on a SpaceWire network. This allows a single SpaceWire
network to be used for both control applications and payload
data-handling.

The Atmel ATG6981 Castor device is a LEON2-FT based
system-on-chip with multiple integrated peripherals including an
eight-port SpaceWire router and three internal SpaceWire
engines each containing three DMA channels, an RMAP
initiator, and an RMAP target.

This paper describes the SpaceWire-D protocol; the design of
RTEMS networking software to test the protocol using the
AT6981 system-on-chip; and the results of those tests.

Index Terms— SpaceWire, SpaceWire-D, deterministic

networks, spacecraft onboard processing, AT6981

1. INTRODUCTION

SpaceWire-D is a deterministic extension to the SpaceWire
on-board data handling network [1] being designed by the
University of Dundee for ESA [2] [3]. To provide a
deterministic capability, SpaceWire-D uses time-division
multiplexing and slices network time into a series of time-slots
in which RMAP [4] transactions are executed. These
transactions are grouped into a virtual bus system, where each
bus consists of an initiator node, one or more target nodes, and
the set of links that make up the paths between the nodes.

Figure 1 shows an example of a virtual bus with an
initiator, three targets, and five links. The semi-transparent
nodes and links are not part of the virtual bus.
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Fig. 1. Example of a virtual bus with three targets and five links
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Due to the wormhole routing used by SpaceWire enabled
routers, if there are multiple data-flows in a SpaceWire
network there is a possibility of a packet being blocked if one
of the SpaceWire links it requires is already in use. There may
be more than one initiator operating in a SpaceWire-D network
at the same time, so a set of initiator schedules is required to
constrain traffic such that no two virtual buses are active in the
same slot if there is a chance that they could have a colliding
transaction i.e. if they have any shared links.

II. SPACEWIRE-D

The following subsections briefly describe the features of
SpaceWire-D. For more in-depth coverage, see the standard
draft [2] and [3].

A. Time-Division Multiplexing

In a SpaceWire-D network, the end of the current time-slot
and the beginning of the next time-slot is signaled by the
arrival of the next valid time-code. SpaceWire time-codes
contain a 6-bit time value, so there are 64 slots in a SpaceWire-
D schedule beginning at slot 0 and ending at slot 63.
Additionally, a local timer can be used to synchronise with the
arriving time-codes to provide redundancy in case a time-code
fails to arrive.

Each time-slot can be assigned a single virtual bus.
However, this is not a symmetric relationship because
depending on the type of virtual bus, a bus may be assigned to
multiple time-slots or adjacent sequences of time-slots called
multi-slots, as described in the following sections.

When a new time-slot begins, if there is a virtual bus
assigned to the time-slot, the group of transactions associated
with the virtual bus is executed.

B. Static Bus

The SpaceWire-D protocol provides services to open, load,
execute, and close four different types of virtual buses. The
first and simplest virtual bus is the static bus.

Each static bus is assigned to a single time-slot or single
multi-slot. Once opened, the user application can then load the
static bus with a group of RMAP transactions. During the
loading operation, the transaction group’s worst-case execution
time (WCET) is checked before the transaction group is
accepted into the static bus. If the WCET of the transaction
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group exceeds the duration of the time-slot or multi-slot it may
interfere with the next slot’s transactions, so the transaction
group is not loaded and an erroneous response is sent to the
user application.

A transaction group can be loaded as a repeating group in
which case it is repeated every time the bus’s time slot occurs
until the bus is reloaded or closed, or as a single shot group
where the transaction group is unloaded after a single
execution.

C. Dynamic Bus

A dynamic bus can be assigned to multiple time-slots or
multi-slots. When a transaction group is loaded, its WCET is
checked, like the static bus, before it is accepted. If a
transaction group is accepted and loaded into a dynamic bus, it
is executed in the next time-slot or multi-slot assigned to the
bus. This results in less predictability than a static bus because
a transaction group could be executed in one of multiple time-
slots.

D. Asynchronous Bus

As with a dynamic bus, an asynchronous bus can be
assigned to multiple time-slots or multi-slots.

However, unlike the static bus and dynamic bus, which are
based around loading groups of transactions, the asynchronous
bus works on a single transaction basis. When a user
application loads an asynchronous bus, it sends a data structure
describing a single transaction along with the transaction’s
priority. The asynchronous bus maintains a prioritised queue of
transactions, and in each available time-slot or multi-slot
assigned to the bus, a subset of the highest priority transactions
is removed from the queue and executed. The subset of
transactions to be executed in the next available time-slot or
multi-slot is updated whenever the user application loads a new
transaction.

E. Packet Bus

The packet bus is a bi-directional channel between an
initiator node and a target node. Receiving packets from and
sending packets to a target are controlled by the initiator via
RMAP read and write operations, respectively.

An initiator node can open multiple channels to targets and
a target can open multiple channels to initiators. When the
channel has been opened on both the initiator and target side,
the packet bus is ready to handle RMAP transactions between
the two nodes.

When a packet bus’s time-slot or multi-slot begins, the
status of all channels is checked to make sure a channel is not
busy before it is used by the packet bus. This allows multiple
initiators to open a channel to the same target and reserve it for
exclusive use.

Optionally, the packet bus can use segmentation to split the
transmission or receiving of a large packet over multiple time-
slots or multi-slots.

F. Schedules

The source of unpredictability in a SpaceWire network is
the possibility of packets being blocked by wormhole routing.

Wormhole routing enables a packet to be switched from an
input port to an output port quickly, but only if the output port
is not already in use. If it is in use, the packet is blocked until
the output port is released.

In order for traffic in a SpaceWire-D network to be
deterministic, the possibility of blocking must be removed.
This is done by ensuring that in each time-slot, the set of links
used by an initiator’s virtual bus is distinct from the set used by
every other initiator’s virtual bus operating within the same
time-slot. If no link is used by two buses at the same time, then
the blocking of SpaceWire packets cannot occur. This means
that for each initiator, a schedule must be created that
simultaneously satisfies this constraint and meets the
bandwidth demands of a mission.

Research into the configuration of schedules for
SpaceWire-D networks is ongoing at the University of Dundee
and elsewhere [5] [6].

Figure 2 shows an example schedule for a single initiator
with 64 time-slots and a combination of different virtual bus

types [3].

Time-Slot Bus

0 Static 0

1 Dynamic 1
2 Static 2
3 Async 3
4 Static 4

5 Async 5
6 Async 5
7 Dynamic 7
8 Empty

9 Dynamic 1
10 Dynamic 7
11 Packet 11
12 Packet 11
13 Packet 11
14 Packet 11
61 Static 61
62 Dynamic 7
63 Static 63

Fig. 2. Schedule for a single initiator with 64 time-slots [3]

III. AT6981 CASTOR SYSTEM-ON-CHIP

The Atmel AT6981 Castor system-on-chip [7] is a LEON2-
FT (SPARC V8 ISA) based flight processor with multiple
integrated peripherals including extensive SpaceWire support.

Figure 3 shows a photo of the cPCI variant of the prototype
AT6981 board, with three SpaceWire cables connected to the
router
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Fig. 3. ¢cPCI variant of the prototype AT6981 board

The following subsections briefly describe the relevant
SpaceWire peripherals, and features in the prototype board
used for this research.

A. SpaceWire Router

The SpaceWire front-end for the AT6981 board is a
SpaceWire router with eight external ports and three internal
ports connected to the SpaceWire engines. The internal ports
have physical addresses 9, 10, and 11 which connect to
SpaceWire engines 1, 2, and 3 respectively.

B. SpaceWire Engines

Connected to the SpaceWire router, the three SpaceWire
engines each contain three DMA channels, an RMAP initiator,
and an RMAP target. The SpaceWire-D tests described in this
paper use only the RMAP functionality in the engines.

In order to allow a SpaceWire packet to address individual
DMA channels, RMAP initiator, or RMAP target, the
SpaceWire engines use a de-multiplexer. The de-multiplexer
matches up to four bytes of the incoming packet against a
pattern and mask configured by the user in the engine’s
registers. It then uses this matching to filter the packet into the
correct DMA channel, RMAP initiator, or RMAP target. This
allows the RMAP initiator and target to have their own logical
addresses.

The execution of RMAP commands are offloaded to the
SpaceWire engines, reducing the demands on the LEON2-FT
processor. The user application holds a list of data structures in
memory describing the required RMAP commands and then
writes the memory address of the list to the RMAP initiator’s
registers. Consequently, if the list of commands is unchanging
over time as in the case of a static bus with a repeating
transaction group, the processing required to begin executing
the transactions is minimal.

C. Memory and Processor

The prototype AT6981 board has 128Kbyte of SRAM and
256MByte of DRAM and the LEON2-FT processor clock rate
is 33MHz, while the production board will run at 200MHz.

D. Debug Support Unit

Loading and debugging a program is done via the LEON2-
FT debug support unit (DSU). The DSU provides a simple
protocol to read and write to memory on the board directly
through hardware. This allows software running on the
development machine to load a program directly into the
AT6981°s memory without the requirement of a bootloader. To
debug a program, a STAR-Dundee software module on the
development machine acts as a GDB remote protocol server
and translates GDB commands into interactions with the DSU,
allowing a simple method for debugging. The AT6981
prototype board provides a USB to UART bridge for
connecting a computer to the DSU.

IV. RTEMS SUPPORT

The tests described in this paper use version 4.10.2 of the
RTEMS real-time operating system, which is an open-source
project being used in many space applications as well as in
other industries [8]. The following subsections describe our use
of RTEMS and its relevant features.

A. Board Support Package

A board support package (BSP) was designed to port
RTEMS to the AT6981 board [9]. The basic BSP consists of
the minimum requirements to run the basic RTEMS tests and
examples. This includes the board initialisation code, a UART
console driver, a clock driver, and support files such as a linker
script file. There exists a BSP for an existing LEON2 device in
the RTEMS source tree, however, the AT6981 is sufficiently
different that it requires a separate BSP.

The AT6981 BSP uses the LEON2-FT’s on-chip UARTS
and timers with slightly modified drivers from the existing
LEON2 BSP. Like the DSU UART, the LEON2-FT on-chip
UARTS are accessible through USB to UART bridges on the
prototype board.

As the AT6981 shares an interrupt between SpaceWire
DMA and RMAP engines in the primary interrupt controller,
the interrupt handling has been extended to allow an interrupt
service routine (ISR) to be registered for either DMA or
RMAP interrupts. When an interrupt is raised on the primary
controller, the interrupt handler then filters it to the relevant
ISR. This allows for separate device drivers for DMA and
RMAP engines.

B. RTEMS Features

RTEMS is a real-time multi-task operating system with a
unified address space. It provides features common in most
operating systems such as tasks, interrupt handling, inter-
process communication, synchronisation, standard data
structures, and a device driver framework. RTEMS also
provides in-depth compile time customisation.

A real-time operating system is designed to value
predictability above other features [10]. As RTEMS is a real-
time operating system, it provides task scheduling algorithms
relevant to a real-time environment. In our case, we are using
the default priority based pre-emptive scheduler which will
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switch context to a higher priority task if one becomes
available at any time.

V. NETWORKING SOFTWARE

RTEMS based networking software is responsible for
providing the SpaceWire-D API to the user application,
managing the virtual buses, managing the transition between
time-slots, and dispatching RMAP commands.

The following subsections describe the different modules of
the SpaceWire-D test software.

A. SpaceWire-D API

The SpaceWire-D API provides a public interface to the
user application and enables an application to initialise the
other SpaceWire-D modules, open a virtual bus, load a virtual
bus, and close a virtual bus. During initialisation, the API
creates tasks for the other modules as well as a task for itself
and uses the RTEMS message queue manager in order to listen
for requests from user applications. These requests are then
handled by the virtual bus manager.

B. Virtual Bus Manager

All functionality related to the opening, loading, and
closing of virtual buses is controlled by the virtual bus
manager. It also contains the data structures describing the
parameters of a virtual bus and its transactions.

C. Time Manager

The time manager is responsible for transitioning between
time-slots, based on the arrival of valid time-codes. In this
version, we are using only time-codes to signal the beginning
and end of time-slots. However, the standard also describes the
use of local timers to synchronise with the arrival of time-codes
for redundancy in case a time-code fails to arrive.

During initialisation of the time manager, we enable
interrupts for the receiving of time-codes using a simple device
driver for the AT6981 SpaceWire router. We then install a
callback function which is called during the router driver’s
ISR. The callback function uses the RTEMS event manager to
send an event to the transaction dispatcher, signalling the start
of the next time-slot.

D. Transaction Dispatcher

When the SpaceWire-D API initialises the other modules, a
task is created for the transaction dispatcher. This task begins
and then blocks, waiting for an event to be received from the
time manager. The task wakes up when the event is received
and, if there is a virtual bus assigned to the time-slot, executes
the virtual bus. For example, if there is a static bus assigned to
the time-slot, the bus’s transaction group will be executed,
assuming one is loaded.

A simple RMAP driver was designed to provide three
features: the first is a function to start a group of RMAP
transactions, the second is an ISR to handle RMAP initiator
interrupts, and the third is a function to initialise one of the
AT6981’s RMAP targets to act as a target node for the purpose
of the experiments.

V1. EXPERIMENTAL SETUP

For our experiments we used two different network
architectures. The following subsections describe and illustrate
both architectures, and the additional supporting hardware and
software used.

A. Single Initiator Architecture

The single initiator architecture as shown in Figure 4, uses
a single AT6981 board as an RMAP initiator and RMAP
target. The AT6981 is connected to a development machine for
loading and debugging programs. The board’s router loops
back to itself with a STAR-Dundee SpaceWire Link Analyser
MKk2 in the middle, to view the transactions and time-codes
flowing through the links. A STAR-Dundee SpaceWire-USB
Brick Mk2 is connected to the AT6981 and acts as the time-
code master. The Link Analyser Mk2 and the Brick Mk2 are
connected to a second laptop for ease of use. The Brick’s time-
code generation is controlled via STAR-Dundee’s STAR-
System software [11]. In this architecture, all SpaceWire links
are operating at 100Mbps.
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Fig. 4. Single initiator architecture

VII. MULTIPLE INITIATOR ARCHITECTURE

The multiple initiator architecture shown in Figure 5 is
similar to the single initiator architecture shown in Figure 4
with the exception that the loopback through the Link Analyser
is removed and replaced by a link between both AT6981
boards, again through a Link Analyser. In this architecture, the
first AT6981 board’s SpaceWire links are operating at
100Mbps and the second board’s links are running at SOMbps.
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Fig. 5. Multiple initiator architecture

Figure 6 shows a photo of the hardware used in the multiple
initiator architecture setup. From left to right, the hardware is
the first AT6981 prototype board, a STAR-Dundee SpaceWire
Link Analyser Mk2, the second AT6981 prototype board, and a
STAR-Dundee SpaceWire-USB Brick Mk2

Fig. 6. Photo of the multiple initiator architecture

VIII. EXPERIMENTAL RESULTS

The following subsections describe the experiments carried
out to test the SpaceWire-D static bus with both single and
multiple initiator architectures, and presents the results
obtained.

A. RMAP Driver

The first iteration of the RMAP driver used by the
transaction dispatcher utilised the UNIX-like device file driver
framework provided by RTEMS. Within this framework, every
device is treated as a file and a driver provides initialise, open,
close, read, write, and ioctl functions to be used with standard
system calls.

After performing some initial tests and measuring the
performance of the driver, it was found that the overhead
required by opening a device file and using an ioctl system call
when dispatching a transaction group was too expensive. By
allowing the transaction dispatcher to call the driver functions
directly instead of through the ioctl system call interface, the
processing time between a time-code being received and the
first RMAP transaction leaving the router was reduced from
741ps to 389us.

Further optimisation was introduced by simplifying the
event handling when a time-code is received. Originally, the
time manager would receive an event from the router ISR, then
forward the event to the transaction dispatcher. By sending the
event directly from the time manager’s callback function, the
processing time was further reduced from 389us to 201ps.

Reducing the initiator processing time between a time-code
being received and the first RMAP transaction leaving the
router from 741pus to 201ps allows the SpaceWire-D network
to run at the minimum slot duration of Ims. With the
production version of the AT6981 running at 200MHz,
compared to the prototype’s 33MHz, and with additional
software optimisations, the initiator processing time should be
further reduced.

B. Single Initiator Experiments

In the single initiator architecture, the AT6981 board acts as
both the RMAP initiator and the RMAP target. During the test
setup, the SpaceWire-D API is initialised, the RMAP target is
initialised, and the test static buses are opened and loaded with
a transaction group.

The first experiment involved opening a single static bus in
slot 0 and loading it with a transaction group containing 32
RMAP write-with-reply commands with a data size of 1KB.
The Brick is generating time-codes every 10ms.

Figure 7 shows a screenshot of the Link Analyser status
counter display interface for the first experiment. In this
interface, the number of various types of characters received
per second are displayed. The first column is the Link Analyser
port that the RMAP headers are transmitting through, and the
second column is the RMAP replies. We can see that there are
32 RMAP transactions being executed by viewing the number
of EOP characters and confirming that the commands were
executed successfully by viewing the packet display interface
within the Link Analyser software. The number of data
characters being transmitted per second can be verified by
calculating the size of the RMAP headers and replies. For the
header, there is 1 physical address at the head of the packet, a
21 byte RMAP header, and 1024 bytes of data. This results in
1046 data characters multiplied by 32 which is 33472 data
characters per second. The reply has 1 physical address at the
head of the packet, and an 8 byte reply, which results in 9 data
characters multiplied by 32, giving 288 data characters per
second.
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Diata Character 3347
EOP Character| 32 I 32 |

EEP Character [T D

FCT Character| 40 | 4,188 |
MULL Character| 12486170 || 12525577 |
Time-code Charader| 100 || 100 |

Fig. 7. Link Analyser output for a single slot schedule

Next, we opened a static bus on all 64 slots and loaded
them with the same transaction group as the previous
experiment.

Figure 8 shows the results from opening a static bus on all
64 slots. Again, the number of data characters transmitted can
be verified by multiplying 1046 data characters by 3200 in this
case, which is 3,347,200 data characters per second. Similarly
the data characters per second for the replies is calculated by
multiplying 9 data characters by 3200 which is 28800.

Data Character
EOP Character| 3,200 | 32 |

EEP Character“

3,347,200

FCT Character| 4,000 | 418,800 |
MULL Character| 8,340,452 || 12281052 |
Time-code Character| 100 || 100 |

Fig. 8. Link Analyser output for a 64 slot schedule

In both cases of the single slot and the 64 slot schedule, the
observed WCET of the transaction group is 4182us. The
observed worst-case processing time of 201ps can be added to
this to give a total static bus execution time of 4383ps.

C. Multiple Initiator Experiments

In the multiple initiator architecture, there are two AT6981
both acting as initiators and as targets for each other. The
schedule in this experiment is split between the two boards. In
all of the even numbered time-slots, the first board opens a
static bus. The second board opens a static bus in all of the odd
numbered time-slots. Each static bus is loaded with the same
transaction group as the single initiator experiments, 32 RMAP
write-with-reply transactions with a data size of 1KB.

Figure 9 shows a screenshot of the Link Analyser status
counter display for the multiple initiator architecture
experiment. In this case, both RMAP headers and RMAP
replies are travelling bidirectionally through both links. To
verify the number of data characters being transmitted per
second for each side of the Link Analyser, we can add the data
characters for both the RMAP headers and the replies. In this
case, there are 1600 transactions being executed every second
by each initiator. This results in 1600 multiplied by 1046 data
characters for the RMAP headers, which is 1,673,600 data
characters per second. For the RMAP replies, there is 1600
multiplied by 9 data characters, which is 14400 data characters

per second. Summing the two gives 1,688,000 as supported by
the screenshot.

Data Character 1,688,
EOP Character| 3,200 |

EEP Character_-

FCT Character| 211,400 | 211,400 |
NULL Character| 10,310,758 || 40686563 |
Time-code Character| 100 || o |

Fig. 9. Link Analyser output for the multiple initiator architecture

IX. FUTURE WORK

The experiments described in this paper were focused on
parts of the static bus of SpaceWire-D networks. Further work
is required to test the remaining features of the static bus such
as transaction group execution time calculation and multi-slot
buses. Additionally, the remaining virtual bus types: the
dynamic bus, the asynchronous bus, and the packet bus require
similar experimentation and testing. Future research will be
carried out to fulfil these goals.

As mentioned in Section 2, the schedulability of
SpaceWire-D networks is an important problem. Research is
being carried out to investigate scheduling methods for the
latest draft of the standard.

X. CONCLUSIONS

This paper has briefly described the latest version of
SpaceWire-D [3] and presented the results from experiments
using the AT6981 [7] prototype board, an RTEMS port for the
AT6981 [9], and RTEMS based networking software to test the
static bus functionality of SpaceWire-D.

The results show that the AT6981 prototype board can be
used to operate a SpaceWire-D network using the static bus
with schedules utilising single slots and all 64 slots. An
experiment was successfully carried out to test a SpaceWire-D
network with two AT6981 boards acting as RMAP initiators
operating in alternating time-slots.
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