
SpaceWire-D Prototype and Demonstration System
Networks & Protocols, Long Paper

David Gibson, Steve Parkes
Space Technology Centre

University of Dundee
Dundee, UK

d.z.gibson@dundee.ac.uk

Chris McClements, Stuart Mills
STAR-Dundee Ltd

Dundee, UK

Abstract SpaceWire-D is an extension to the SpaceWire 
protocol that provides deterministic capabilities over existing 
SpaceWire equipment. The network is divided into segments using 
a virtual bus abstraction, where a virtual bus consists of a single 
RMAP initiator, one or more RMAP targets and the SpaceWire 
links that make up the paths between the initiator and the targets. 
Time-codes are broadcast periodically to provide time-division 
multiplexing, and a network schedule is defined by the allocation 
of virtual buses to time-slots. If a virtual bus has been allocated a 
time-slot, it is allowed to execute transactions to any of the targets 
within the virtual bus as long as the transactions complete their 
execution before the end of the time-slot. If the schedule is designed 
so that no virtual buses sharing a link are allocated the same time-
slot, packets are no longer affected by blocking which allows the 
transaction execution times to be calculated and real-time 
constraints to be satisfied.

The SpaceWire-D demonstration system has been designed to 
facilitate the verification of the draft standard. It consists of two 
RMAP initiators, twelve RMAP targets, a network manager 
device, a host PC and a routed SpaceWire network to connect the 
devices together. The LEON2-FT based initiator boards each 
contain an embedded SpaceWire-D software layer and an 
automated test scripting system, built on top of the RTEMS real-
time operating system. The target boards respond to RMAP 
commands and provide event notification functionality on the 
backplane to allow for network activity monitoring. The network 
manager receives statistics and error information at the end of 
each schedule epoch, reported by the initiators, and informs the 
host PC so that it can be read, parsed and displayed to the user. 
Finally, the host PC runs a suite of software programs to 
configure, control and monitor the other devices in the 
demonstration system.

This paper provides an overview of the SpaceWire-D protocol 
and describes the design and features of the SpaceWire-D
demonstration system.

Index Terms SpaceWire, SpaceWire-D, Deterministic 
Networks, Demonstration System

I. INTRODUCTION

SpaceWire is a data-handling network used on-board 
spacecraft to provide communication between scientific 
instruments, mass-memory storage devices, on-board 
computers, downlink telemetry and other subsystems [1].

SpaceWire enabled devices are connected by full-duplex data 
links, providing bi-directional data-flow at variable transmission 
rates of between 2 Mbit/s and 200 Mbit/s. The simplest 
SpaceWire network can consist of two nodes with a point-to-
point link between them. If more complex network topologies
are required, routing switches can be used to direct traffic 
between nodes.

SpaceWire networks can suffer from blocking caused by 
wormhole routing if a packet is delayed because of another 

its source to its destination. The packet will be held within one 

can complete its journey through the network. Due to 

unpredictable packet propagation times which means that a 
regular SpaceWire network is not suitable for real-time 
applications such as command and control traffic because these 
delays could cause a critical deadline to be violated.

The aim of SpaceWire-D is to solve this problem by 
providing deterministic features in order to ensure that blocking 
does not cause deadlines to be missed, as well as allowing 
deterministic and non-deterministic traffic to share the same 
network. If these goals can be achieved, then cable mass will be 
reduced as the spacecraft now only requires one network to 
handle both payload data and control traffic which in turn will 
reduce complexity and cost.

II. SPACEWIRE-D

SpaceWire-D is a deterministic extension to SpaceWire 
designed by the Space Technology Centre at the University of 
Dundee for ESA [2].

SpaceWire-D operates by controlling which parts of the 
network are allowed to operate at specific times. Network time 
is divided into isochronous time-slots which are controlled by 
the distribution of consecutive SpaceWire time-codes. The 
network is divided into segments called virtual buses where all 
traffic, encapsulated within Remote Memory Access Protocol 
(RMAP) [3] transactions, is controlled by a single initiator. Each 
initiator has a schedule which describes which time-slots are 
allocated to its virtual buses. If some rules are adhered to when 
creating the schedules, the possibility of blocking can be 
removed and the deterministic requirements of a command and 
control network can be satisfied.



A. Time-Slots

A SpaceWire-D time-slot is a period of time that begins 
when an initiator receives a time-code and ends when the 
initiator receives the next time-code. SpaceWire time-codes 
contain a 6-bit time-value so there are 64 time-slots. This is 
illustrated in Figure 1.

Figure 1: Time-Slots

In Figure 1, there is a timeline going left to right on the 
horizontal axis showing when time-codes are received by an 
initiator. At the start of the illustration, time-slot 63 is currently 
active. When time-code 0 is received by the initiator, this 
terminates time-slot 63 and signals the beginning of time-slot 
0. The same process is repeated for another two time-codes.

The generation of time-codes is synchronised by using a 
single time-code master responsible for sending out time-codes 
at fixed-length intervals, typically at a rate of 1-1024 Hz, 
allowing for between 1 and 16 schedule epochs per second. 
Each initiator listens for time-codes being received by, for 
example, installing an interrupt service routine (ISR) that is 
called whenever a time-code interrupt is raised, or polling a 
time-code status flag if interrupts are discouraged. The initiator 
can then inform its SpaceWire-D layer that a new time-slot 
should be executed, which will in turn execute any scheduled 
transactions for the virtual bus allocated to the time-slot.

B. Virtual Buses

Virtual buses are segments of the overall network that have 
a specific structure. They consist of a single RMAP initiator, 
one or more RMAP targets and the SpaceWire links that make 
up the paths between the initiator and the targets. For example, 
take the network architecture illustrated in Figure 2.

Figure 2: Overall Network Architecture

In Figure 2, there is a network containing two initiators, six 
targets, three routers and some links to connect the different 

nodes and routers. Two possible virtual bus configurations are 
shown in Figure 3.

Figure 3: Example Virtual Buses

As shown in Figure 3, there are two virtual buses, each 
consisting of one initiator, three targets and the links between 
the nodes. In this example, the two virtual buses have no shared 
links so they can be thought of as independent i.e. they can 
operate at the same time without RMAP transactions on one 
virtual bus interfering with transactions on the other.

Virtual buses have four different functions: an initiator 
opens a bus, defining its configuration and allocating its time-
slots; loads it with transactions, transaction groups or packet 
transfer requests; executes it during an allocated time-slot; and 

types of virtual bus, each with their own implementations of the 
load and execute functions which provide features related to 
different classes of traffic which exist on a data-handling or 
command and control network.

1) Static Bus
The Static Bus is the simplest type of virtual bus. It is 

allocated a single time-slot in which it executes a repeating or 
single-shot transaction group.

2) Dynamic Bus
The Dynamic Bus can be allocated multiple time-slots and 

loaded with transaction groups. When it is loaded with a 
transaction group, the group is executed within the next 
allocated time-slot that occurs.

3) Asynchronous Bus
The Asynchronous Bus can be allocated multiple time-slots 

and loaded with prioritised transactions. These transactions are 
held in a queue and in the time-slot preceding one of the
allocated time-slots, a subset of transactions is pulled from the 
head of the queue until no more will fit in the time-slot or the 
queue is empty. This transaction group is then executed in the 
allocated time-slot.

4) Packet Bus
The Packet Bus can be allocated multiple time-slots and 

loaded with requests to transfer a packet between the initiator 
and a target. The packet transfer operation takes place in three 
stages: firstly, the initiator checks the status of a packet channel 
within the target to make sure the target is ready to receive or 
send a packet; secondly, the packet is transferred in one or more 
segments via RMAP read or write transactions depending on if 



the initiator is receiving or sending a packet; lastly, the initiator 
executes an EOP transaction with the target to inform it that the 
packet has been transferred and that the packet channel may be 
used to transfer another packet.

III. DEMONSTRATION SYSTEM

The SpaceWire-D demonstration system consists of two 
LEON2-FT based PXI processor boards, acting as the initiators 
and controlling the execution of all RMAP transactions; three 
STAR-Dundee PXI RMAP interface boards [4], each containing 
four individual RMAP targets with separate memory regions, 
resulting in a total of 12 RMAP targets; one STAR-Dundee PXI 
RMAP interface board acting as the network manager, used to 
receive and store statistics and error information reported by the 
initiators; two STAR-Dundee PXI 8-port SpaceWire routers, 
providing the network connecting the devices; and one PXI 
system controller, running Windows 7, acting as the host PC and 
running a suite of software used to configure, control and 
monitor the other devices on the network. A photograph of the 
SpaceWire-D demonstration system is shown in Figure 4.

Figure 4: SpaceWire-D Demonstration System

In Figure 4, the PXI rack contains the following boards, 
from left to right: initiator 0, initiator 1, router 0, router 1, the 
network manager, target interface 0, target interface 1 and target 
interface 2. To the left of initiator 0, partially in shot, is the host 
PC.

There are 11 SpaceWire 0.5m cables providing the network 
between the initiators, targets, routers and network manager. 
The network architecture and logical addressing has been 
designed so that both initiators can communicate with targets 
on the same target interface board without sharing links. This 
allows, for example, Initiator 0 to communicate with two 
targets in Target Interface 0 and Initiator 1 to communicate with 
the other two targets within the same time-slot, without 
violating the rules of SpaceWire-D. A network architecture
diagram for the SpaceWire-D demonstration system is shown 
in Figure 5.

Figure 5: Network Architecture

In Figure 5, the network architecture diagram shows that 
initiator 0 is connected to router 0 and initiator 1 is connected 
to router 1. If initiator 0 wants to send an RMAP command to a 
target, the command is routed from router 0 to SpaceWire port 
1 of the relevant target interface board and if initiator 1 wants 
to do the same, the command is routed from router 1 to 
SpaceWire port 2 of the target interface board. Commands sent 
to the network manager from the initiators are routed in a 
similar manner.

Each of the target interface boards contains four individual 
RMAP targets with their own logical address and region of 
memory. Targets 0-3, 4-7 and 8-11 are contained within 
interface 0, interface 1 and interface 2, respectively. The 
network manager uses two of its targets; the first is allocated to 
receive i
allocated to receive reports from initiator 1.

The SpaceWire-D demonstration system uses logical 
addressing throughout the network to route packets between 
nodes. The logical addresses and the available memory regions 
of each device in the network are listed in Table 1.

Table 1: Logical Addresses and Memory Regions

Device LA Memory (Start) Memory (End)

Initiator 0 (I) 0x30 N/A N/A

Initiator 0 (T) 0x90 0x60000000 0x61000000

Initiator 1 (I) 0x31 N/A N/A

Initiator 1 (T) 0x91 0x60000000 0x61000000

Target 0 0x40 0x00000000 0x10000000

Target 1 0x41 0x00000000 0x10000000

Target 2 0x42 0x00000000 0x10000000

Target 3 0x43 0x00000000 0x10000000

Target 4 0x50 0x00000000 0x10000000

Target 5 0x51 0x00000000 0x10000000

Target 6 0x52 0x00000000 0x10000000

Target 7 0x53 0x00000000 0x10000000

Target 8 0x60 0x00000000 0x10000000

Target 9 0x61 0x00000000 0x10000000



Target 10 0x62 0x00000000 0x10000000

Target 11 0x63 0x00000000 0x10000000

As listed in Table 1, each node has a logical address and, if 
the node is a target, a memory region. Each initiator device also 
contains an RMAP target with a 16 Mbyte region of memory 
starting at address 0x60000000 and each of the targets within 
the target interface boards has a 256 Mbyte region of memory 
starting at address 0x00000000. The target within the initiator 
devices is used to contain the transaction read and write buffers 
and to allow the host PC to write data to them before executing 
a test.

Figure 5 shows that the target interface boards, the network 
manager and the host PC are connected to the backplane PXI 
bus. The backplane is used by the host PC to read and write to 
target memory and receive RMAP command notifications from 
the targets, as described in Section E.

The interactions between the different devices are 
illustrated in Figure 6.

Figure 6: Device Interactions

As shown in Figure 6, each device interacts with one or 
more other devices in the SpaceWire-D demonstration system.
The initiators send RMAP commands to the targets and the 
targets send RMAP replies back. The initiators report statistics 
and error information to the network manager, which is then 
read by the host PC. The host PC configures the initiators using 
RMAP commands and uploads automated test scripts to control 
their operation. The targets are configured by the host PC using 
a combination of RMAP commands and reading/writing to 
memory on the backplane.

A. Initiators

The initiators are LEON2-FT based PXI processor boards 
with extensive SpaceWire support. The boards have a
SpaceWire router with eight external ports and three internal 
ports, each connected to independent SpaceWire protocol 
engines containing three DMA controllers, an RMAP initiator 
and an RMAP target.

In addition to the embedded SpaceWire-D software layer
running on the initiators, which is built on top of the RTEMS 
real-time operating system [5], there is a demonstrator 
application. The application is responsible for interpreting 
scripted commands which are uploaded to the initiators by the 
Host PC in order to automate test scenarios.

The automated test scripting system allows the user to 
describe transactions, transaction groups, packet bus operations 
and time-triggered commands as a text file which is parsed, 
compiled and uploaded to the initiators by the host PC software. 
For example, an automated test script could be created that 
describes 10 transactions encapsulated within 2 transaction 
groups and a packet bus operation to send a packet from an 
initiator to a target. The script could then list commands to open 
two static buses and a packet bus at the start of the test and load 
them with the transaction groups and packet bus operation at 
specific times during the execution of the schedule. The 
automated test scripting system was used to implement all test 
scenarios during the SpaceWire-D verification activity.

B. Targets

The targets are STAR-Dundee PXI RMAP interface boards 
which contain a SpaceWire router with four external ports and 
four internal ports, each connected to an individual RMAP 
target. The boards have 1 Gbyte of DDR3 memory which can be 
divided between the four targets as configured by the user. In the 
case of the SpaceWire-D demonstration system, the targets are 
configured so that they each have access to 256 Mbytes of 
memory.

The target boards have the ability to notify a host application 
whenever certain events occur such as the execution of an 
RMAP command or a request for command authorisation. The 
notifications are sent as data structures contained within 
SpaceWire packets to STAR-System channel 1 on the backplane 
and can be received using the STAR-System API [6].

Each RMAP comment notification contains the command 
header parameters as well as the value of the current time-code 

-slot in which 
the command was executed can be identified. In the SpaceWire-
D demonstration system, this information is extracted from the 

so that it can be 
used to record and display the activity between the initiators and 
targets as described in Section E.

C. Routers

The routers are STAR-Dundee PXI routers [4] containing
eight external ports and they provide the network for the 
SpaceWire-D demonstration system, allowing each initiator to 
be routed to each interface board without sharing any links.

D. Network Manager

The network manager is another STAR-Dundee PXI RMAP 
interface board. It is controlled by the host PC software to act as 
the time-code master for the SpaceWire-D network and it also 
receives statistics and error information reported by the initiators 
via RMAP write commands to two of the targets within the 
board.

Each initiator is assigned a separate RMAP target and 
memory address to write its statistics and error information into 
at the end of each schedule epoch. Initiator 0 is assigned address 
0x00000000 within target 0 and initiator 1 is assigned the same 
address within target 1.

for RMAP event notifications coming from the board, which it 



parses and uses to read the statistics and error information from 
address 0x00000000 in the corresponding target. The 
information is then read from the target by the software and 
displayed in the Network Manager program running on the host 
PC. The statistics include the number of completed transactions, 
incomplete transactions, RMAP errors and early, late and
missing time-code errors. Further error information is provided 
in the error list which describes the time-slot, the virtual bus 
related to the error and the class and type of error.

Errors are detected at three stages: firstly, if an RMAP 
command has incorrect header parameters or an error occurs on 
the initiator where the command cannot be sent, it is reported as 
an encoder error; secondly, if an RMAP reply is returned to the 
initiator with an error or if an error occurs on the initiator where 
the reply cannot be processed, it is reported as a decoder error; 
lastly, if an RMAP transaction is outstanding at the end of its 
allocated time-slot, it is cancelled and reported as an incomplete 
transaction error. The initiators are responsible for detecting and
reporting the errors and the network manager is responsible for 
receiving the error list and informing the host PC, but no further 
action is taken. It is the responsibility of a higher-level protocol 
or the application to handle the errors. 

E. Host PC

The host PC is an ADLINK PXI-3950 system controller with 
an Intel Core2 Duo T7500 2.2 GHz processor and 4 GBytes of 
667 MHz DDR2 running Windows 7 32-bit. It is responsible for 
initialising the other devices within the SpaceWire-D
demonstration system and running a suite of Qt4.8 based C++ 
applications used to configure and control the initiators, targets 
and network manager; and display network activity reported to 
the network manager via RMAP commands by the initiators, 
and across the backplane by the targets.

1) Initiator Configuration
The Initiator Configuration program is used to configure and 

control each of the LEON2-FT processor boards acting as the 
initiators. It has the ability to read and write the network and 
target parameters, used by the initiators to calculate RMAP 
execution times; create different types of virtual buses and 

, compile and write 
automated test scripts to the initiators; and send commands to 
the initiators to enable and disable the schedule and other 
features like local-timer synchronisation.

2) Target Configuration
The Target Configuration program is used to configure and 

control each of the RMAP targets in the three PXI interface 
boards. It has the ability to read and write the RMAP command 
authorisation parameters; set the packet channel buffer locations 
and lengths; write data to, and read data from, the target 
memory; and enable the target interface board as a babbling 
node. A screenshot of the Target Configuration program is 
shown in Figure 7.

Figure 7: Target Configuration Program

In Figure 7, the top section allows the user to select which 
target they would like to configure. In the middle section, the 
authorisation parameters can be set to define the valid key 
range, valid target logical address range, accessible memory 
region and permitted commands. In the bottom section is a tab 
layout with three separate tabs. The first tab contains a menu to 
select a packet channel and fields to set the location and length 
of the receive and transmit buffers used by the packet bus to 
transfer packets between an initiator and the selected packet 
channel. The second and third tabs allow the user to write data 
to, and read data from,
second main tab, the user can enable target interface boards as 
babbling nodes, which send out randomised RMAP commands
on the network.

3) Network Manager
The Network Manager program is used to configure the 

time-code master and receive and display statistics and error 
information reported to the network manager by the initiators. It 
has the ability to set the time-code rate and enable or disable the 
time-code master; display the statistics reported by the initiator 
in a table, divided by type and time-slot; and display the error 
information as a list. A screenshot of the error list is shown in 
Figure 8.

Figure 8: Network Manager Error List

In Figure 8, the screenshot shows a list of errors reported by 
the initiator during a test in which a STAR-Dundee Link 
Analyser Mk2 is periodically injecting disconnect errors in the 
link between router 0 and target interface 0. The columns are: 



virtual bus ID, target index, virtual bus type, transaction ID, 
error category and error type. In this example, two types of 
errors are detected and reported: firstly, if the disconnect causes 
the command packet to be truncated, it will not have a 
corresponding reply so at the end of the allocated time-slot, the 
transaction is cancelled and reported as an incomplete 
transaction; and secondly, if the disconnect causes the reply 
packet to be truncated in its data section, it is reported as a data 
EEP decoder error.

When the Network Manager program is initialised, it starts
to listen for RMAP event notifications from the Network 
Manager RMAP interface board by receiving SpaceWire 
packets on the backplane through STAR-System channel 1. 
When a notification is received, the software checks that the 
parameters of the RMAP command match those expected by an 
initiator statistics and error report. If so, the report is read from 
the target memory and the statistics table for the relevant 
initiator is updated and any errors detected during the last 

4) Target Monitor
The Target Monitor program is used to display the network 

activity visually and statistically through a series of views. It has 
the ability to display activity in real-time, by updating a grid that 
shows if any of the targets were read from or written to during 
each time-slot. It shows the number of completed transactions, 
bytes read from and written to the target in total and per second, 
and it also breaks this information up for each time-slot. Finally, 
it shows a list of detailed information about all RMAP 
transactions taking place across all targets. There are three views 
in the Target Monitor program: the schedule view, the target 
statistics view and the command list view.

A screenshot of the Target Monitor schedule view, which 
shows network activity as a grid, is shown in Figure 9.

Figure 9: Target Monitor Schedule View

In Figure 9, the screenshot shows the Schedule View during 
the execution of a test where each initiator is executing two 
static buses and one dynamic, asynchronous and packet bus. 
The virtual buses in initiator 0 are executing transactions with 
targets 0x40-0x43 and 0x50-0x51, taking up the left side of the 
diagram. virtual buses are executing transactions 
with targets 0x52-0x53 and 0x60-0x63, shown on the right side 
of the diagram. There are two static buses executed by each 

initiator, shown as dark blue cells, and allocated to time-slots 0 
and 2. The dynamic bus executed by each initiator, shown as 
green cells, are allocated time-slots 8, 10 and 12. The 
asynchronous bus executed by each initiator, shown as magenta 
cells, is allocated time-slot 16. Finally, the packet bus executed 
by each initiator, shown as cyan cells, is allocated time-slots 32, 
34 and 36.

The target statistics view lists the number of errors, 
commands and bytes read/written in total, per second and 
divided by time-slot. Figure 10 shows an image of the Target 
Statistics View section for target 0x40.

Figure 10: Target Monitor Target Statistics View

In Figure 10, the screenshot shows the Target Statistics 
View for target 0x40 during the execution of a schedule 
containing network activity in time-slots 0 and 8. The total and 
per second statistics are shown in the top section and the per 
time-slot statistics are shown in the scrollable table.

The final section of the Target Monitor program is the 
Command List View, which displays a detailed description of
every RMAP command received on all targets. An image of the 
Command List View is shown in Figure 11.

Figure 11: Target Monitor Command List View

In Figure 11, the screenshot shows the start of the Command 
List View during the execution of a schedule containing at least 
three static buses. The columns are: virtual bus ID, target 
logical address, target index, initiator logical address, 
transaction ID, RMAP key, command type, memory address, 
data length and status. In this case, there are nine transactions 
executed by static buses 0, 8 and 16. The first three, to targets 



0x40, 0x50 and 0x60, and the last three, to targets 0x41, 0x51 
and 0x61 are executed by initiator 0x30. The middle three, to 
targets 0x40, 0x50 and 0x60, are executed by static bus 8 in 
initiator 0x31.

IV. CONCLUSIONS

SpaceWire-D is an extension to the SpaceWire protocol that 
provides deterministic capabilities over existing equipment. It 
does this by using time-division multiplexing and a virtual bus 
system to schedule traffic on the network so that no blocking can 
occur, resulting in reliable RMAP transaction execution times.

The SpaceWire-D demonstration system was designed to 
verify the SpaceWire-D standard and demonstrate its 
capabilities. It consists of a PXI rack containing two initiators, 
twelve targets, a network manager, a host PC and a routed 
SpaceWire network to connect the devices together. An 
embedded SpaceWire-D layer and automated test scripting 
system was designed, built on top of the RTEMS real-time 
operating system; and a software suite, running on the host PC, 
was designed to configure, control and monitor the other devices 
on the network.

ACKNOWLEDGEMENTS

The research leading to these results has received funding 
from the European Space Agency under ESA contact number 

4000107346/12/NL/LvH/fe. We would also like to thank David 
Jameux, the ESA project manager for the SpaceWire-D related 
activity.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12 Links, nodes, 

Standardization, 31 July 2008, available from http://www.ecss.nl

[2] -D Standard 
D
Dundee, April 2015

[3] ECSS Standard ECSS-E-ST-50- Remote 

Space Standardization, 5 February 2010, available from 
http://www.ecss.nl

[4] STAR- https://www.star-
dundee.com/products/spacewire-pxi

[5]
https://www.rtems.org/

[6]

Engineering Conference, Barcelona, Spain, August 2016


