
High performance SpaceWire RMAP/DMA engine

for the CASTOR microprocessor
SpaceWire Components, Short Paper

Chris McClements, Steve Parkes, Albert Ferrer,

Alberto Gonzalez-Villafranca

STAR-Dundee Ltd

Dundee, UK

chris.mcclements@star-dundee.com, steve.parkes@star-

dundee.com

Abstract— CASTOR is a new radiation tolerant SPARC V8

processor chip which is currently being developed by Atmel in

partnership with STAR-Dundee. The chip is implemented on a

90 nm radiation tolerant process which will deliver an expected

processor clock speed of 200 MHz. The CASTOR chip is targeted

at data processing and instrument control applications, and will

deliver functional improvements over previous SPARC

processors. The chip has eight SpaceWire interfaces running at

200 MBits/s, a CAN bus interface and IEEE 1553 bus interface.

At the core of the CASTOR chip is a number of dedicated high

performance SpaceWire Remote Memory Access Protocol

(RMAP) and Direct Memory Access (DMA) engine’s connected

to the SpaceWire interfaces through a SpaceWire router. Each

SpaceWire engine is capable of acting as an RMAP target,

RMAP initiator or as a general purpose SpaceWire packet

transmitter and receiver between the SpaceWire network and

packet data defined in internal memory. Dedicated SpaceWire

DMA channels are used to ensure software involvement in

SpaceWire packet generation and reception is kept to a

minimum. The SpaceWire interfaces support the SpaceWire-D

protocol used for guaranteed latency and deterministic packet

delivery. In conjunction with the RMAP initiator the chip can

rapidly be configured as a highly capable SpaceWire-D initiator.

The chip can act as an RMAP target, initiator or both. The

RMAP target provides a mechanism to allow remote access to the

internal memory space. Two modes of operation are supported

to allow direct access to a pre-defined area of memory or

controlled access using authorisation by software. The RMAP

initiator uses information stored in internal memory by the

application software to access remote memory in equipment

connected to the SpaceWire network. The engine is capable of

initiating a number of RMAP transfers from remote memory,

either writing data from internal memory to a remote memory

location or receiving data from a remote memory location and

writing it to internal memory, then interrupting the host when all

transactions are complete.

The DMA channels allow the application software to send and

receive data packets using data structures defined in internal

memory. Each SpaceWire engine has a number of DMA channels

which can operate independently of each other.

Index Terms—SpaceWire, CASTOR, RMAP, Sparc V8

I. INTRODUCTION

An onboard SpaceWire [1] system comprises a number of

SpaceWire nodes and routers connected together through high

speed serial links. The nodes on the SpaceWire network can be

sensors, mass memories and processing units. CASTOR is a

new radiation tolerant SPARC V8 processor chip which is

currently being developed by Atmel in partnership with STAR-

Dundee.

The CASTOR chip has eight SpaceWire interfaces to

facilitate communication over the SpaceWire network. The

application software running on the processor has access to a

number of dedicated high performance SpaceWire Remote

Memory Access Protocol (RMAP) [2] and Direct Memory

Access (DMA) engines to provide RMAP and application

specific packet generation and reception without excessive

processor workload.

II. FEATURES

The CASTOR chip has dedicated RMAP target and

initiator hardware which offloads RMAP packet generation and

checking from the processor. The target can be configured to

allow a remote unit to read and write memory locations inside

the processor memory space without interrupting the host

software. The initiator facilitates access to remote memory

spaces through RMAP protocol commands and offloads

multiple transaction generation and reply packet checking from

the processor.

A multi-channel DMA packet transmission and reception

controller is available to the processor to send and receive data

through a SpaceWire router. The DMA channels are optimised

to support high throughput of SpaceWire packets with minimal

interruption of the processor. Generation and checking of

CRC-8 and CRC-16 checksums are supported by the DMA

channels.

Packets are routed to the SpaceWire network through an

eight port SpaceWire router. This allows the CASTOR chip to

connect too many peripherals and also act as a routing device.

Protocol support is provided for the SpaceWire-D deterministic

data delivery protocol [3], the SpaceWire plug and play

protocol [4], multiple time-code counters and distributed

interrupt time-codes [5].

III. SYSTEM ARCHITECTURE

The system architecture is defined in Fig. 1.

The SpaceWire engines contain an RMAP target [6], an

RMAP initiator and a multi-channel DMA controller. Each

engine facilitates packet generation and checking of RMAP

and DMA transfers between the processor and the SpaceWire

router, offloading the processor for other tasks. The SpaceWire

router [7] has 8 SpaceWire ports running at 200 MBps and 3

internal FIFO ports for connection to the engines. The routers

internal configuration port, port 0, facilitates configuration of

the internal registers through RMAP or Plug and Play. The

APB interface is used to configure and read status registers

from SpaceWire engines, time-code controller and SpaceWire

router. The interrupt controller provides event notification to

the host processor for packet, time-code and error events which

occur. The time-code controller implements time-code

forwarding and distributed interrupt forwarding.

IV. SPACEWIRE ENGINE

The CASTOR chip has three SpaceWire engines which can

act as an RMAP target, an RMAP initiator and to transmit and

receive data from internal memory through a multi-channel

DMA controller. The engine performs memory accesses

through an AHB master interface and is configured through an

APB interface.

The SpaceWire engine architecture is shown in Fig 2. The

engine is comprised of a protocol multiplexer which connects

to the SpaceWire router, an RMAP target, an RMAP initiator, a

multi-channel DMA controller, an AHB interface and an APB

interface.

A. Protocol Multiplexer

When sending, packets to the SpaceWire Router, the

multiplexer selects the next packet to be sent and waits for the

end of packet before selecting the next packet to be

transmitted.

When receiving, packets from the SpaceWire Router, the

protocol de-multiplexer checks the first four packet bytes

against a configurable pattern and mask to determine the

destination of the packet, either RMAP target, RMAP initiator

or a specific DMA channel. The pattern and mask are

programmable by the host processor through the APB registers.

The protocol multiplexer allows multiple destination nodes

or multiple protocols to be handled by the DMA channels. A

packet received at a node which conforms to the ECSS-E-ST-

50-51C [8] standard will have a leading logical address byte

and a protocol identifier byte, followed by the packet cargo

bytes and an end of packet. The protocol multiplexer transfers

data packets from the RMAP target, initiator and the DMA

channels into the SpaceWire FIFO. Arbitration is performed

between the channels using a fair arbitration scheme where

each packet source takes it in turn to transmit packets.

B. RMAP target

The RMAP target accepts RMAP commands from a remote

system, performs read and write memory access commands

over the AHB bus to system memory and returns an optional

reply packet to the remote system. The target supports all

RMAP commands with the option of limiting the commands

which can be performed by configuration from software. A 16

byte verified write buffer is provided to support verified write

commands.

An RMAP command received by the target is required to

be authorised before it can access system memory. The

processor can configure the RMAP target to act in two modes

of operation.

The first mode requires the host processor to authorise

commands through the APB register interface. Authorisation is

requested using the Interrupt output of the core. The host

software should read all the authorisation fields and then

decide if the command is valid by authorising the command

DMA Channel
(x3)

DMA Channel
(x3)

Protocol
Mux/

Demux

RMAP Target

RMAP Initiator

DMA Channel
(x3)

AHB
IF

APB
IF

Registers

AHB

APB

SpaceWire
FIFO
Interface

Target Data

Initiator Data

Channel Data

Register
Interface

Interrupt
Controller

Interrupt

Fig. 2. SpaceWire engine

SpW Engine 1

SpW Engine 2

SpW Engine 3

APB IF

SpW Router

AHB

AHB

AHB

APB

IRQInterrupt

SpaceWire
x8

Time-code

Fig. 1. System architecture

through the RMAP target command register. When the target

has completed the RMAP command it will interrupt the host

processor again with the notification status.

In the second operation mode the host processor sets which

RMAP operations are authorised and the address range in

which RMAP commands can operate. Any command which is

performed outside of the address range or other authorisation

fields is not authorised and recorded as an error.

C. RMAP initiator

The initiator uses the RMAP protocol to write data from

system memory to a remote system, or read data from a remote

system and place it in a pre-defined area of memory. The

initiator can be used by the processor to collect data from

remote targets into system memory and check the data

received. The initiator uses RMAP transaction specific data

structures in memory to control the command type and

command fields which will be used to generate the RMAP

packet. A transaction table is stored in memory to facilitate the

transmission of multiple command packets before the replies

for those commands have been received. The initiator validates

all reply packet fields against the expected fields stored in the

transaction table. If an error occurs the error is recorded and the

reply packet is not acted upon.

Before the initiator can be used to send RMAP commands

it must be given space in system memory to store outstanding

transactions. An outstanding transaction is required to tell the

initiator where in memory it should store reply data and

notification status

The initiator is split into three separate entities: the encoder,

decoder and timeout checker. Each of the initiator entities can

operate in a different mode. The encoder and decoder have

three modes of operation: notification mode, list mode and

watchdog mode (modes 1, 2 and 3). The timeout checker has

two modes of operation: notification mode and passive mode.

Encoder/Decoder modes:

In mode 1, notification mode, the initiator waits for the host

software to respond to each initiator command sent and reply

received before continuing. This mode is suitable for hosts

which wish to know when commands are sent or received and

process the command data and status immediately.

In mode 2, command list mode, the initiator can send a

number of commands or receive a number of replies before the

host software is notified. The status for each command and

reply is stored in a transaction defined notification area of

memory. The host can check the command/reply status after

the command list has been completed.

In mode 3, watchdog mode, the initiator can send a number

of commands and receive a number of replies while the host is

waiting for a timer to expire or another interrupt/event to occur.

The host uses the timer, or other interrupt/event, to check if the

commands have completed and the status of each command.

This mode is useful when the host needs to know if the

commands have been sent within a defined time period but

does not need to check the operation status until the time

period has expired.

The initiator implements an optional timeout counter for

each outstanding transaction. When a reply is not received

within the timeout period the transaction will be discarded and

an error recorded.

Timeout checker modes:

In mode 1, notification mode, a transaction which times

out, reply not received within the selected timeout period, will

cause the notification bit in the status register to be set. The

notification bit is acknowledged by the host software before the

initiator can perform any further operations.

In mode 2, passive mode, a transaction which times out will

be deleted from the initiator table and no notification will be

generated. The timeout status will be recorded in the

transaction defined notification area of memory.

D. Transmitting packets using the DMA channel transmitter

The DMA controller supports multiple concurrent TX

channels which can be programmed to send one or multiple

SpaceWire packets continuously. Channels can be disabled and

enabled at any time, affecting the data rate of the

corresponding channel without producing data loss. This

allows a simpler implementation of MAC algorithms by

software.

A packet consists of one or multiple data chunks stored in

different memory locations. This allows the packet header to be

stored in a different location that the packet data content.

Sending of PUS [9] packets is supported by providing the

hardware computation of its CRC-16. Continuous transmission

of packets is provided using circular buffer architecture with

data and packet descriptor pointers. Interrupts can be set to

monitor the progress of transmission of packets without halting

the actual operation. This makes it possible to achieve the

maximum SpaceWire data rate with minimum CPU utilization.

Errors in one channel do not affect the operation of other

channels.

E. Receiving packets using the DMA channel receivers

Each channel can be associated to a different packet type or

protocol using a packet filter based on the first four bytes of the

header. Packets which are received on the same DMA channel

are stored contiguously in memory and their packet length is

stored in packet descriptors. Reception of RMAP packets is

supported by providing the hardware computation of its CRC-

8. Reception of PUS packets is supported by providing the

hardware computation of its CRC-16. Continuous reception of

packets is provided using circular buffer architecture with data

and packet descriptor pointers. It is possible to enforce that a

packet is not split at the end of the memory region. Interrupts

can be set to monitor the progress of packets received without

halting the actual operation. The user application or the SW

driver should free the space used by packets already processed.

This procedure allows data to be received at the maximum

SpaceWire data rate with minimum CPU utilization. When an

error occurs the reception is halted and the system is

interrupted.

V. SPACEWIRE ROUTER

The SpaceWire router has eight SpaceWire interfaces, three

external port interfaces and an internal configuration port

which supports the RMAP protocol. The internal configuration

and status registers are also accessible through an APB

interface. A control register is used to determine if the router is

controlled through the configuration port or through the APB

interface. Configuration by both masters at the same time is not

supported although reading the status information from both

masters at the same time is supported.

The SpaceWire router architecture is illustrated in Fig 3.

VI. TIME-CODE CONTROLLER

The SpaceWire time-code controller has functions to

forward time-codes dependent on the time-code flags or to

generate time-codes from software, processor timer interrupt or

an internal dedicated time-code master count. The time-code

controller has a time-code register for each of the four time-

code flags, therefore allowing independent time-code

forwarding for each flag code.

The time-code controller stores the last time-code received

for each type of control flag and can indicate to the host that a

time-code has been received through the status/interrupt

interface.

The time-code forwarding mechanism checks that received

time-codes are one more than the last time-code received then

the time-code will be forwarded through all ports except the

port the time-code arrived on. If the time-code is a distributed

interrupt code then the interrupt vector is checked and the

controller will forward the time-code if the interrupt vector bit

is 0. If the interrupt vector bit is 1 the time-code is discarded as

the interrupt has already been set. The time-code will be

forwarded through all ports except the port the time-code was

received on.

The controller can act as a time-code master either by

software insertion of a time-code, sending time-code on a

processor timer interrupt or by setting up an internal time-code

master counter. The time-code frequency can be controlled by

the host software with up to 1 micro-second precision.

Status bits and processor interrupts are provided for

received time-codes for each time-code flag value, time-codes

transmitted for each time-code flag value and distributed time-

code interrupt occurred.

VII. CONCLUSION

The CASTOR chip is a capable SpaceWire processing unit

which comprises a SPARC V8 process with an enhanced

floating point unit and memory management unit running at

200 MHz on a radiation tolerant process. The SpaceWire

engines inside the CASTOR chip provide high performance

SpaceWire RMAP and DMA functions including dedicated

RMAP target and initiator hardware to reduce the processor

workload.

REFERENCES

[1] ECSS Standard ECSS-E-ST-50-12C, “SpaceWire, Links,

Nodes, Routers and Networks”, Issue 1, European Cooperation

for Space Data Standardization, July 2008.

[2] ECSS, “SpaceWire - Remote memory access protocol”, ECSS-

E-ST-50-52C, Feb 2010.

[3] S. Parkes, Albert. Ferrer, S Mills, A Mason, “SpaceWire-D:

Deterministic data delivery with SpaceWire”, International

SpaceWire conference, Russia, 2010.

[4] P. Mendham, S. Parkes, “SpaceWire Plug-and-play: a

Roadmap”, International SpaceWire conference, Nara, Japan,

2008.

[5] Yuriy Sheynin, Sergey Gorbatchev, Liudmila Onishchenko,

“Real-Time Signalling in SpaceWire Networks”, International

SpaceWire conference, Nara, Japan, 2008.

[6] Chris McClements, Steve Parkes, “SpaceWire RMAP IP Core”,

International SpaceWire conference, Russia, 2010.

[7] S. Parkes, C. McClements, G. Kempf, S. Fishcher, P. Fabry, A.

Leon, “SpaceWire Router ASIC”, International SpaceWire

Conference, Dundee, 2007.

[8] ECSS standard ECSS-E-ST-50-51C, “SpaceWire engineering:

SpaceWire protocol identification”, European Cooperation for

Space Data Standardization, February 2010.

[9] ECSS standard ECSS-E-70-41A, “Ground systems and

operations – Telemetry and telecommand packet utilization”,

European Cooperation for Space Data Standardization, January

2003.

Fig. 3. SpaceWire router architecutre

	I. Introduction
	II. Features
	III. System Architecture
	IV. SpaceWire Engine
	A. Protocol Multiplexer
	B. RMAP target
	C. RMAP initiator
	D. Transmitting packets using the DMA channel transmitter
	E. Receiving packets using the DMA channel receivers

	V. SpaceWire Router
	VI. Time-code Controller
	VII. Conclusion
	References

