
iopasdfghjklzxcvbnmq

 

 

 

 



 

2 

 



 

3 

 

 

 

 

 

SpaceWire User’s Guide 

 

 

 

 

Steve Parkes



 

4 

 
 



 

5 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Copyright © 2012 STAR-Dundee Limited 

All rights reserved. No part of this book may be reproduced in any form 

without permission. 

 

ISBN: 978-0-9573408-0-0 

Published by STAR-Dundee Limited, 2012 



 

6 

 



 

7 

Table of Contents 

GLOSSARY 10 

1 INTRODUCTION 12 

2 THE SPACEWIRE DATA-HANDLING NETWORK 13 

2.1 The Rationale for and Brief History of SpaceWire 13 

2.2 An Example SpaceWire Application 15 

2.3 How SpaceWire Works 17 
2.3.1 SpaceWire Links 17 
2.3.2 SpaceWire Packets 18 

2.4 SpaceWire Architectures 22 
2.4.1 Point to Point Links 22 
2.4.2 Fault Tolerant Links 24 
2.4.3 Router Based Architecture 26 
2.4.4 Instrument Data Concentrator 31 
2.4.5 Bridge to Low Data Rate Sensor Bus 32 

2.5 Example SpaceWire Mission Architectures 33 
2.5.1 Missions Using SpaceWire 33 
2.5.2 ESA ExoMars 36 
2.5.3 NASA Lunar Reconnaissance Orbiter 38 
2.5.4 BepiColombo 40 
2.5.5 ASNARO 43 

3 SPACEWIRE LINKS 45 

3.1 Physical Level 46 
3.1.1 Cables 46 
3.1.2 Connectors 47 
3.1.3 Cable Assemblies 47 
3.1.4 Printed Circuit Board Tracks 49 

3.2 Signal Level 49 
3.2.1 Signal Level and Noise Margins 49 
3.2.2 Data encoding 52 

3.3 Character Level 53 
3.3.1 SpaceWire Characters 53 
3.3.2 Parity Coverage 55 



 

8 

3.3.3 Character Priority 56 
3.3.4 Character Functions 56 
3.3.5 Character Synchronisation 57 

3.4 Exchange Level 58 
3.4.1 SpaceWire Link Interface 58 
3.4.2 Link Initialisation 60 
3.4.3 Link Flow Control 65 
3.4.4 Link Error Handling 67 
3.4.5 Auto-Start 70 

3.5 Packet Level 71 

3.6 Link error Recovery 73 

4 SPACEWIRE NETWORKS 77 

4.1 SpaceWire Nodes 77 

4.2 SpaceWire Routing Switch 77 

4.3 Routing Tables 78 

4.4 Group Adaptive Routing 81 

4.5 Wormhole Routing 82 

4.6 Header Deletion 84 

4.7 Time-code Broadcast 87 

4.8 Router Configuration 88 

4.9 Packet Distribution 88 

4.10 Example SpaceWire Router 88 
4.10.1 SpW-10X Architecture 88 
4.10.2 Watchdog Timers 91 
4.10.3 Routing to a Not-Connected Port 91 
4.10.4 Routing to a Non-Existent Port 91 
4.10.5 Routing to a Busy Port 91 
4.10.6 Start On Request, Disable On Silence 92 
4.10.7 Tristate 95 
4.10.8 Disable Transmit Clocks 95 
4.10.9 Priority Packet Delivery 95 

5 TIME-CODES 97 

5.1 Time-code Structure 97 

5.2 Time-code Interface 97 



 

9 

5.3 Time-counter 98 

5.4 Time Master 99 

5.5 Time-codes across a Link 99 

5.6 Router Action on Receiving a Time-code 100 

5.7 Time-code Distribution across a Network 100 

5.8 Lost Time-Codes 103 

5.9 Time-code Latency 105 

5.10 Time-code Applications 106 
5.10.1 Synchronisation 106 
5.10.2 Time Distribution 106 
5.10.3 Event Signalling Across A Point-To-Point Link 106 
5.10.4 Multiple Time-codes 107 
5.10.5 Interrupt scheme 107 

6 SPACEWIRE PROTOCOLS 108 

6.1 Protocol Identifier 108 

6.2 Remote Memory Access Protocol 108 

6.3 CCSDS Packet Transfer Protocol 109 

REFERENCES 110 

 

 



 

10 

 GLOSSARY 

Data character – A character containing 8-bits of data 

Destination 

address 

– The leading byte or bytes of a packet that are used 

by routers to determine how to route a packet 

towards its destination 

EEP – Error End of Packet, which is used to terminate a 

packet when an error has occurred 

EOP – End of Packet marker which indicates the end of a 

packet 

FCT – Flow Control Token which is exchanged for eight N-

Chars 

Input port – The part of a SpaceWire interface in a router that 

receives packets 

Link – A connection between two SpaceWire interfaces 

N-Char – A data character, EOP, or EEP 

Node – A source or destination of SpaceWire packets 

Null – A symbol that is sent when there is no other 

information to send to keep the link active 

Output port – The part of a SpaceWire interface in a router that 

sends packets 

Packet – A sequence of data characters followed by an EOP 

or EEP, the packet is made up of a destination 

address, cargo, and EOP/EEP 

Port – An input port or output port of a SpaceWire router 



 

11 

Router – A packet switch that forwards packets towards their 

destination, selecting a link to forward the packet 

through based on the destination address of the 

packet 

SpaceWire 

interface 

– An interface used to send SpaceWire packets and 

time-codes 

Time-code – A symbol comprising an Escape symbol followed by a 

data character, where the data character contains 

two reserved bits and six bits of time information 

 



 

12 

1 Introduction 

The SpaceWire User’s Guide aims to introduce the reader to SpaceWire. 

It begins in chapter 2 with an overview of SpaceWire, providing a brief 

history of SpaceWire, looking at an example SpaceWire application, 

examining how SpaceWire works, considering different SpaceWire 

architectures, and finally looking at some real mission architectures to see 

how SpaceWire is being used in practice. 

Section 3 goes into much more detail about SpaceWire links. It describes 

each level of the SpaceWire standard in detail, explaining the way each 

level operates and the reasons SpaceWire is designed the way it is. 

Section 4 describes SpaceWire routers and networks. SpaceWire nodes 

and routers are introduced and the mechanism inside a router explained 

along with the way in which a router is configured.  An example SpaceWire 

router chip, the Atmel AT7910E SpW-10X router, is then described in some 

detail. 

Section 5 explains how SpaceWire time-codes work and introduces some of 

the applications they have been used for. 

Section 6 introduces some higher level SpaceWire protocols. This chapter is 

yet to be completed. Please check www.star-dundee.com for the latest 

version. 

The SpaceWire User's Guide is compiled from several papers written by 

Steve Parkes, the CEO of STAR-Dundee and author of this guide. 

http://www.star-dundee.com/


 

13 

2 The SpaceWire Data-Handling Network 

SpaceWire is a data-handling network for use on-board spacecraft, which 

connects together instruments, mass-memory, processors, downlink 

telemetry, and other on-board sub-systems [1] [2] [3]. SpaceWire is simple 

to implement and has some specific characteristics that help it support data-

handling applications in space: high-speed, low-power, simplicity, relatively 

low implementation cost, and architectural flexibility making it ideal for many 

space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), 

bi-directional, full-duplex data-links, which connect together SpaceWire 

enabled equipment. Data-handling networks can be built to suit particular 

applications using point-to-point data-links and routing switches.  

Since the SpaceWire standard was published in January 2003, it has been 

adopted by ESA, NASA, JAXA and RosCosmos for many missions and is 

being widely used on scientific, Earth observation, commercial and other 

spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars 

rover, BepiColombo, James Webb Space Telescope, GOES-R, Lunar 

Reconnaissance Orbiter and Astro-H. 

2.1 The Rationale for and Brief History of SpaceWire 

Before SpaceWire became a standard, many spacecraft primes and 

equipment manufacturers had their own proprietary communication interface 

for inter-unit communications, e.g. connecting high data-rate instruments to 

mass-memory units. This resulted in several different communication links 

being used on a spacecraft, increasing the cost and extending the time 

required for spacecraft integration and test. There was a clear need for a 

standard on-board communication link that would simplify spacecraft 

development. 

Back in 1992, when work on what became SpaceWire started, there was 

also substantial interest in high performance digital signal processing 

systems which were beyond the capability of the single-chip devices 



 

14 

available at that time. The use of parallel processing was investigated and 

this required some form of network to interconnect the individual processing 

elements [4]. The Inmos Transputer [5], a microprocessor designed for 

parallel processing was studied, and the serial communication links being 

developed for the T9000 Transputer [6] were identified as being an 

attractive solution for spacecraft on-board networking. This serial link 

technology was subsequently published as IEEE 1355-1995 [7]. 

Several radiation tolerant devices were developed using the IEEE 1355-

1995 standard and it was used on some space missions. However, there 

were many problems with this standard, which had to be resolved if this 

technology was to continue to be used for ESA spacecraft. University of 

Dundee received a contract from ESA [8] to examine and solve these 

problems which eventually resulted in the SpaceWire standard. 

SpaceWire aims to: 

 facilitate the construction of high-performance on-board data-

handling systems,  

 help reduce system integration costs,  

 promote compatibility between data-handling equipment and 

subsystems, and  

 encourage re-use of data-handling equipment across several 

different missions.  

Use of the SpaceWire standard ensures that equipment is compatible at 

both the component and sub-system levels. Instruments, processing units, 

mass-memory devices and down-link telemetry systems using SpaceWire 

interfaces developed for one mission can be readily used on another 

mission. This: 

 reduces the cost of development (Cheaper),  

 reduces development timescales (Faster),  

 improves reliability (Better),  

 increases the amount of scientific work that can be achieved within 

a limited budget (More).  



 

15 

2.2 An Example SpaceWire Application 

SpaceWire is able to support many different payload processing 

architectures using point-to-point links and SpaceWire routing switches. The 

data-handling architecture can be constructed to suit the requirements of a 

specific mission, rather than having to force the application onto a restricted 

bus or network with restricted topology. 

An example SpaceWire architecture is shown in Figure 1. It uses two 

SpaceWire routers to provide the interconnectivity between instruments, 

memory and processing modules. 

Instrument 1

High Data Rate

SpaceWire Router 1

Control 

Processor

Data 

Processor /

Compressor

SpW

SpW SpW

Instrument

2

SpW

SpW

Mass Memory Module

SpW

SpW

SpaceWire Router 2

SpW SpW SpW

Telemetry Formatter

& Encryption Module

SpW

SpW

I/O

MODULE SpW

Instrument 4

Instrument

3

Instrument

5

Instrument

6

Instrument

7

Spacecraft Control Bus

RTC

CAN

Bus

SpW

1 2 3 4

98765

1 2 3

4

Platform

Payload

Downlink Telemetry  

Figure 1 Example SpaceWire Architecture 

Instrument 1 in the top left-hand corner is a high data-rate instrument. A 

SpaceWire point-to-point link is used to stream data from this instrument 

directly into the Mass Memory Module. If a single SpaceWire link is 



 

16 

insufficient to handle the data-rate from this instrument then two or more 

links may be used in parallel. 

Instrument 2 is of lower data-rate than instrument 1. Its data is passed 

though SpaceWire Router 1 to the Mass Memory Module. 

Instrument 3 does not have a SpaceWire interface so an input/output (I/O) 

module is used to connect the instrument to the SpaceWire router. Its data 

may then be sent over the SpaceWire network to the Mass Memory Module. 

Instrument 4 is a complex instrument containing a number of sub-modules 

which are interconnected using the CAN bus. A Remote Terminal Controller 

(RTC) is used to bridge between the CAN bus and SpaceWire. Other 

signals from the instrument are also connected to the RTC, which contains a 

processor for performing the bridging and local instrument control functions. 

Instruments 5, 6 and 7 are located in a remote part of the spacecraft. To 

avoid having three SpaceWire cables running to this remote location a 

second router (SpaceWire Router 2) is used to concentrate the information 

from these three instruments and send it over a single SpaceWire link to 

Router 1 and then on to the Mass Memory Module. 

This Mass Memory Module can receive data from any of the instruments 

either directly, as is the case for Instrument 1, or indirectly via Router 1. 

Data stored in the Mass Memory Module can be sent to the Telemetry 

Formatter/Encryption Module for sending to Earth, or it may first be sent to a 

Data Processing or Data Compression Unit. This unit may return the 

processed/compressed data to the Mass Memory Module or send it straight 

to the Telemetry Module via Router 1. 

The Control Processor is responsible for controlling all the Instruments, 

Mass Memory Module and Telemetry unit. Via the SpaceWire Network it 

has access to all these modules: it can configure, control and read 

housekeeping and status information from them. The Control Processor is 

also attached to the spacecraft control bus over which it can receive 

telecommands and forward housekeeping information. 



 

17 

With several instruments and the Data Processor/Compressor sending data 

to the Mass Memory Module via Router 1, a single link from that Router to 

the Mass Memory Module may be insufficient to handle all the data, so a 

second link has been added to provide more bandwidth. In a SpaceWire 

network links can be added to provide additional bandwidth or to add fault 

tolerance to the system. In Figure 1 no redundancy has been included for 

clarity. In a spaceflight application, an additional pair of routers would be 

included with duplicate links to the modules to provide redundancy. It is 

straightforward to support traditional cross-strapped, redundant modules 

using SpaceWire. 

2.3 How SpaceWire Works 

Having looked at the way in which SpaceWire can be used to provide a 

spacecraft data-handling system, we will now examine SpaceWire in a little 

more detail to provide some understanding of how SpaceWire works. 

2.3.1 SpaceWire Links 

SpaceWire links are point-to-point data links that connect together a 

SpaceWire node (e.g. instrument, processor, mass-memory unit) to another 

node or to a router. Information can be transferred over both directions of 

the link at the same time. Each link is a full-duplex, bi-directional, serial data 

link which can operate at data-rates of between 2 Mbits/s and 200 Mbits/s. It 

sends information as a serial bit stream using two signals in each direction 

(data and strobe). These signals are driven across the link using Low 

Voltage Differential Signalling (LVDS) [9] [10] which requires two wires for 

each signal, resulting in a SpaceWire cable containing four screened twisted 

pairs.  

Bit synchronisation in SpaceWire is achieved by sending a clock signal 

along with the serial data. To reduce the maximum clock to data skew 

requirements the clock signal is encoded into a strobe signal in such a way 

that XORing the data and strobe signal recovers the clock signal. 



 

18 

Character synchronisation is performed once only, when the link is started. 

If character synchronisation is ever lost it will be detected as a parity error 

and the link restarted to recover character synchronisation. 

SpaceWire provides a simple mechanism for starting a link, keeping the link 

running, sending data over the link, ensuring that data is not sent if the 

receiver at the other end of the link is not ready for it, and for recovering 

from any errors on the link. All this is handled by the link state-machine in 

the SpaceWire interface and is transparent to the user application.  

2.3.2 SpaceWire Packets 

Information is transferred across a SpaceWire link in distinct packets. 

Packets can be sent in both directions of the link, provided that there is 

room in the receiver for more data.  

A packet is formatted as illustrated in Figure 2. 

Destination Address Cargo EOP

Figure 2 SpaceWire Packet Format 

The "Destination Address" is the first part of the packet to be sent and is a 

list of data characters that represents either the identity of the destination 

node or the path that the packet has to take through a SpaceWire network 

to reach to the destination node. In the case of a point-to-point link directly 

between two nodes (no routers in between) the destination address is not 

necessary. 

The "Cargo" is the data to be transferred from source to destination. Any 

number of data bytes can be transferred in the cargo of a SpaceWire 

packet. 



 

19 

The “End of Packet” (EOP) is used to indicate the end of a packet. The data 

character following an EOP is the start of the next packet. There is no limit 

on the size of a SpaceWire packet.  

As can be seen, the packet format for SpaceWire is very simple. It is, 

however, also very powerful, allowing SpaceWire to be used to carry a 

range of user protocols, with minimal overhead. 

2.3.2.1 SpaceWire Networks 

SpaceWire networks are constructed using SpaceWire point-to-point links 

and routing switches.  

2.3.2.2 SpaceWire Routing Switches 

A SpaceWire router [11] connects together many nodes using SpaceWire 

links, providing a means of routing packets from one node to any of the 

other nodes or routers attached to the router. A node is simply the source or 

destination of a SpaceWire packet. A SpaceWire router comprises a number 

of SpaceWire link interfaces and a switch matrix. The switch matrix enables 

packets arriving at one link interface to be transferred to and sent out of 

another link interface on the router.  

Each link interface may be considered as comprising an input port (the link 

interface receiver) and an output port (the link interface transmitter). A 

SpaceWire router transfers packets from the input port of the switch where 

the packet arrives, to a particular output port determined by the packet 

destination address. A router uses the leading data character of a packet 

(one of the destination address characters) to determine the output port of 

the router to which the packet is to be routed. If there are two input ports 

waiting to use a particular output port when the previous packet has finished 

being sent, an arbitration mechanism decides which input port is to be 

served. 



 

20 

2.3.2.3 Packet Addressing 

The destination address at the front of a SpaceWire packet is used to route 

the packet through a network from the source node to the destination. There 

are two forms of addressing used in SpaceWire networks: path addressing 

and logical addressing. 

Path addressing can best be understood using the simple analogy of 

providing directions to someone driving a car. To reach the destination you 

might suggest that the driver takes exit 2 at the first roundabout, exit 1 at the 

next roundabout, and finally exit 3 on the third roundabout. The driver will 

then have reached the required destination (see Figure 3). There is a 

direction to follow at each roundabout (take a particular exit). Together these 

directions describe the path from the initial position to the required 

destination. There is a list of directions to follow, one for each roundabout. 

Once a direction has been followed it is crossed off the list and the next 

direction is followed at the next roundabout. 

In a SpaceWire network the roundabouts are routers and the roads 

connecting the roundabouts are the links connecting the routers (see Figure 

3). The list of directions is attached to the front of the SpaceWire packet 

forming the destination address. The first direction is followed when the first 

router is encountered. This direction is simply a data character that specifies 

which port of the router the packet should be forwarded through. A router 

can have a maximum of 31 external ports (port numbers 1 to 31) and one 

internal configuration port (port number 0). The leading data character at the 

front of the packet is used to specify the port that the packet is to be 

forwarded through: if the leading data character is 3, the packet will be 

forwarded out port 3 of the router. Once the leading data character has been 

used to forward a packet, it is discarded as it is no longer needed. This 

reveals the next data character in the path address for routing the packet at 

the next router. Figure 3, shows how the path address at the start of the 

packet is modified as the packet goes through the network. Since a router 



 

21 

can have a maximum of 31 ports along with an internal configuration port, 

each data character forming a path address is in the range 0 to 31. 

 

   

SpaceWire 

Router 1

Source

1

5

4

2

3

4

Destination

SpaceWire 

Router 2
1

2

3SpaceWire 

Router 3
2

4

3

4

1

<2,1,3><Cargo><EOP>

<1,3><Cargo><EOP>

<3><Cargo><EOP>

<Cargo><EOP>

 

Figure 3 Path Addressing 

Logical addressing can also be understood using the analogy of giving 

directions to a car driver. Logical addressing is like saying to the driver, 

“follow the signs to Dundee at each of the roundabouts”. This, of course, 

requires appropriate signs to be placed at each roundabout and each 

destination has to have a name or identifier so that it can be recognised on 

the signs. The logical address analogy is illustrated in Figure 4.  

In a SpaceWire network using logical addressing, each destination is given 

an identifier, which is a number in the range 32 to 255. Each router in the 

network has a routing table (like the sign at a roundabout) which specifies 

what port the packet should be forwarded through for each possible 

destination identifier. The leading data character of a packet is set to the 

required destination identifier (e.g. 44 for Dundee). At each router the 

leading data character is used to look up the appropriate directions from the 

routing table and the packet is forwarded accordingly. For logical addressing 

the leading data character is not discarded at each router, since it will be 

needed to look up the path to follow at the next router encountered. The use 



 

22 

of logical addressing is illustrated in Figure 4. Logical addressing uses just a 

single data character to identify the destination which is in the range 32 to 

255 so that it does not get confused with path addresses. 

SpaceWire 

Router 1

Source

1

5

4

2

3

4

Destination

“Dundee”

SpaceWire 

Router 2
1

2

3SpaceWire 

Router 3
2

3

4

1

<44><Cargo><EOP>

<44><Cargo><EOP>

<44><Cargo><EOP>

<44><Cargo><EOP>

44  (Dundee) exit 2
65 (Edinburgh) exit 3

44 (Dundee) exit 1
53 (Aberdeen) exit 2

44 (Dundee) exit 3
42 (Kirriemuir) exit 2

 

Figure 4 Logical Addressing 

Logical addressing has the advantage that only a single address 

byte is required, but it does require the routing tables to be 

configured before it can be used. Path addressing requires a byte for 

each router and does not need routing tables in the routers. 

2.4 SpaceWire Architectures 

Now the way in which SpaceWire can be used to build data-handling 

architectures adapted for specific mission requirements is examined. 

2.4.1 Point to Point Links 

The simplest and most widespread use of SpaceWire is to connect a high 

data-rate instrument directly to an onboard mass memory. This arrangement 

is illustrated in Figure 5. 



 

23 

Instrument Memory

SpaceWire

 

Figure 5 Point to Point Link 

The instrument can send SpaceWire packets containing the instrument data 

directly to the memory over the SpaceWire link. The data can be packaged 

into SpaceWire packets with a size appropriate to the application. For 

example if the instrument is some form of push broom imager it may be 

appropriate to send one line of the image at a time e.g. 34 KByte packets. If 

the instrument is a camera a complete image could be transferred in one 

packet e.g. 2 MBytes. 

The instrument can simply send data to the memory once it has collected 

the data or the memory could send a command to the instrument to ask for 

the next set of data. SpaceWire includes low-level flow control so that if the 

memory is not ready the instrument is unable to send data until the memory 

becomes ready. This means that if the memory is not able to accept data 

from the camera as soon as it is ready, the camera will have to buffer the 

data. 

The advantages of this type of architecture are: 

 Simplicity 

 Low power per Mbit/s 

 Full bandwidth of link available to application 

The disadvantages are: 

 No redundancy – if the link fails the instrument is lost. 

 May be inefficient if link bandwidth not fully utilised  



 

24 

This latter point serves to highlight another capability of SpaceWire. A 

SpaceWire interface can initialise very rapidly (20 µs). If an instrument 

provides data in bursts or occasionally on demand, then it is possible to turn 

off the link when it is not being used. If one end of the link is set to auto-start 

mode it will start up as soon as some traffic appears on the link. So, for 

example, if the instrument is to send data to the memory occasionally when 

it has detected some event, the SpaceWire interface on the memory may be 

put into auto-start mode. The SpaceWire interface in the memory will stop 

and wait listening for any traffic on its input. The instrument can then switch 

off its SpaceWire interface. When an event occurs the SpaceWire interface 

in the instrument is enabled and started, the initialisation traffic on the link is 

detected by the SpaceWire interface in the memory unit causing its link to 

start and a connection to be made. The instrument can then transfer its 

data. It takes just 20 µs to achieve this connection. 

The type of application where the single point to point link is used is for the 

direct connection of an instrument to memory where no fault tolerance is 

required i.e. it is acceptable that if the SpaceWire link fails the instrument is 

lost. 

2.4.2 Fault Tolerant Links 

The avoidance of possible single point failures is important for most space 

missions especially for mission critical services. SpaceWire provides a 

simple means of adding fault tolerance into a system where it is required.  

SpaceWire is fairly robust due to the good EMC properties of LVDS and the 

cable screening used. Rarely are errors seen on a link unless they are 

injected. If a transient error does occur then the SpaceWire link immediately 

disconnects itself electrically and goes through the re-initialisation process. 

In 20 µs the link is up and running again. The packet that was in the process 

of being transferred is truncated and terminated by a special Error End of 

Packet (EEP) character to indicate that it was terminated prematurely. The 

next packet to be sent will be delivered successfully provided that the fault 



 

25 

was temporary. If the packet that was terminated by the fault was important 

then it is up to the user application to detect the fact that it was not delivered 

properly and to resend the information. Protocols for providing this type of 

service which run over SpaceWire have been and are being developed by 

the SpaceWire working group. 

If the fault on a SpaceWire link is permanent, for example the wires may 

have become disconnected or a SpaceWire interface may have stopped 

working, then recovery requires a second, redundant SpaceWire link. This is 

illustrated in Figure 6. 

Instrument Memory

Prime

Redundant
 

Figure 6 Fault Tolerant Links 

If the prime SpaceWire link stops working then the redundant link has to be 

started and data sent over this link. Simple logic in the instrument can 

provide this functionality. 

A more robust system is illustrated in Figure 7. 

Instrument
Prime

Memory
Prime

SpaceWire

Prime

Redundant

Instrument
Redundant

Memory
RedundantRedundant

Redundant

 

Figure 7 Cross-Strapping 

In this example the instrument is crucial to the mission success so two 

instruments are provided. Each instrument has two SpaceWire interfaces: 



 

26 

one prime and one redundant. Similarly there are two memory units. During 

normal operation the redundant instrument and memory units are switched 

off. The prime instrument sends data to the prime memory. If the prime 

instrument fails then it is switched off and the redundant instrument is 

switched on. The prime memory then receives instrument data via its 

redundant SpaceWire interface. This classical cross-strapping is readily 

supported by SpaceWire – additional links are simply put where redundancy 

is required. 

The advantages of this type of architecture are: 

 Simplicity 

 Low power per Mbit/s 

 Full bandwidth of link available to application 

 Fault tolerant 

The disadvantages are: 

 Mass penalty as several links needed for redundancy 

 Inefficient if bandwidth not fully utilised 

This architecture is ideal where the direct connection of an instrument to a 

memory or other unit is required and where a single point failure is not 

acceptable. 

It is important that a failure on the prime link does not propagate and cause 

a failure on the redundant link.  

2.4.3 Router Based Architecture 

A SpaceWire router enables more sophisticated architectures to be 

implemented when required. A basic router-based architecture is illustrated 

in Figure 8. 



 

27 

Instrument
1

Memory

Instrument
2

Processor

Router

 

Figure 8 Basic Router-Based Architecture 

The SpaceWire router interconnects all of the SpaceWire units. It is then 

possible for any unit to send data or receive data from another unit. The two 

instruments can send data to the memory unit, the processor unit can read 

data from the memory unit for checking or processing, and the processor 

can control the two instruments and memory unit. 

The advantages of this type of architecture are: 

 Versatile architecture 

 All units can talk to one another through router 

 Control and data can be sent over network 

 Control flow is generally opposite direction to data flow 

The disadvantages are: 

 Have to be aware of potential blocking in router - need to consider 

traffic on network 

 Router is potential single point failure 

 Additional power consumption of router 



 

28 

The possible blocking of a router can occur if, for example, the two 

instruments both decide to send data to the memory unit at the same time. 

Since the router only has one link to the memory unit, only one instrument 

can send a packet down this link at a time. If the packet from instrument 1 

gets there first it will be sent, but the packet from instrument 2 will be 

blocked until the packet from instrument 1 has been sent. If the packet from 

instrument 1 is large then instrument 2 may have to wait for a long time. 

This is illustrated in Figure 9. 

Instrument
1

Memory

Instrument
2

Processor

Router

1 2

3 4

 

Figure 9 Blocking in a Router 

Instrument 1 is sending a packet (shown in green) to the memory unit. 

Instrument 2 also wants to send a packet (blue) to the memory unit, but 

since the link from the router to the memory unit is already being used this 

packet is blocked within the router. Only when the packet from instrument 1 

has finished being sent, will the packet from instrument 2 be able to proceed 

on its way to the memory unit. This characteristic of a SpaceWire network is 

known as “blocking” and is an important characteristic to understand. 

There are several ways to avoid this situation. If the required total data rate 

from the two instruments is larger than can be provided by a single 

SpaceWire link then a second link is required between the router and 

memory, possibly using group adaptive routing, which will provide graceful 

degradation in the event of a failure of one link. If the total data rate from the 



 

29 

two instruments is less than the data rate of a single SpaceWire link then 

the router can act as a concentrator permitting a packet from say instrument 

1 first, followed by a packet from instrument 2. In this case the amount of 

data buffering in the instruments will depend upon the size of the packets 

being sent. Hence, it makes sense to use short packets rather than long 

ones to reduce the amount of buffer memory required. Another alternative is 

for the memory (or processor) to control when an instrument is allowed to 

send data. For example, the memory could request data from instrument 1 

and once this has been received it could request data from instrument 2. 

There are many possibilities: SpaceWire is flexible enough to support the 

requirements of different types of mission. 

It should be noted that since the router uses wormhole routing and does not 

support packet buffering in the router, the speed of all the SpaceWire links 

attached to a router should normally all be set to the same rate. 

Typical applications for this type of architecture include payload data-

handling systems with more than one instrument or multiple possible 

destinations for data from an instrument. The potential single point failure of 

the router can be avoided by including a second router connected to all the 

units. 

Figure 10 shows a prime and redundant pair of routers which have been 

included in prime and redundant data handling units together with the mass 

memory and processing units. This provides router redundancy while 

reducing the lengths (and hence mass) of the SpaceWire links. 



 

30 

Prime

Redundant

Instrument 1
Prime

Memory

Instrument 2
Prime

Processor
Router

Router

Memory

Processor

Instrument 1
Redundant

Instrument 2
Redundant

 

Figure 10 Router in Data-Handling Unit  

The advantages of this type of architecture are: 

 Supports multiplexing of several instruments 

 Supports prime/redundant instruments 

 No single point failures 

 Lower mass penalty of links since several links embedded in data-

handling units 

The disadvantages are: 

 Have to be aware of potential blocking in router - need to consider 

traffic on network 

 Additional power consumption of router. 

This type of architecture is ideal when a redundant data handling system is 

required.  



 

31 

2.4.4 Instrument Data Concentrator 

It has already been mentioned that a SpaceWire router can act as a data 

concentrator. Another example of this is shown in Figure 11. 

Prime

Redundant

Instrument
1

High Rate

Memory

Instrument
2

Processor
Router

Router
Memory

Processor

Instrument
3

RouterInstrument
4

Instrument
5

1

4
5

6

1

2

4

3

Note: numbers by router ports are example port numbers
 

Figure 11 Router as Data Concentrator 

Instrument 1 is a high data rate instrument and is connected by direct links 

to the routers in the prime and redundant data-handling systems. 

Instruments 2-5 are lower data rate instruments which are, for example, all 

situated in one area of the spacecraft. To reduce the size of the cable 

harness the data from Instruments 2-5 are concentrated by a SpaceWire 

router and sent to the prime or redundant data-handling units over single 

SpaceWire links. 

The advantages of this architecture are: 

 Reduced cable mass 

 High rate instrument(s) have direct connection to data-handling unit 

 Low to moderate rate instruments are connected via concentrating 

router 

 



 

32 

The disadvantages of the particular architecture shown in Figure 11 are: 

 Have to be aware of potential blocking in router - need to consider 

traffic on network 

 Concentrating router is not redundant 

The concentrating router can be made redundant if required by adding 

redundant SpaceWire links and interfaces. 

This type of architecture is suitable for payload data-handling systems with 

distributed clusters of instruments which are being served by centralised 

data-handling unit. 

2.4.5 Bridge to Low Data Rate Sensor Bus 

Some sensors, like thermocouples, are very low data rate and a low data 

rate sensor bus (e.g. CAN bus) may be more suitable for gathering data 

from them. The data gathered may still be sent to the data-handling system 

via a SpaceWire link if a bridge between the low data rate sensor bus and 

SpaceWire is used. This is illustrated in Figure 12.  

Prime

Redundant

Instrument
1

High Rate

Memory

Instrument
2

Processor
Router

Router
Memory

Processor

Instrument
3

Router

Instrument
4

Sensor
A

RTC
Sensor

B
Sensor

C

Low Data Rate Bus

 

Figure 12 Bridge to Low Data Rate Bus 



 

33 

The Remote Terminal Computer (RTC) provides a bridge between the 

SpaceWire network and the low data rate sensor bus. The RTC gathers 

data from the low data rate sensors, puts it in a SpaceWire packet and 

sends it to the data handling system. Commands for the low data rate 

sensors (or actuators) can be passed from the data-handling processor to 

the RTC for distribution to the low data rate sensors. 

The advantages of this type of network are: 

 Multiple low data rate sensors attached to low speed bus - sensor 

data packed and sent to data-handling unit over SpaceWire 

 Legacy devices can be supported – e.g. Mil-Std 1553 

The disadvantages are: 

 Two types of bus/network used 

The applications for this type of architecture are data handling systems that 

include several low data rate sensors or that require to support legacy 

devices. 

Other units like the downlink telemetry and uplink telecommand system can 

be readily included in a SpaceWire system. SpaceWire architectures can be 

adapted to the mission requirements including links to serve one or more 

instruments, routers to provide architectural flexibility, and interfaces to 

electronic ground support equipment. 

2.5 Example SpaceWire Mission Architectures 

Some of the major space missions currently using SpaceWire are listed in 

this section and then the data-handling architectures of five of them (two 

from ESA, one from NASA, and two from JAXA) are examined in more 

detail. 

2.5.1 Missions Using SpaceWire 

The European Space Agency (ESA) is using SpaceWire on:  



 

34 

 GAIA a very high resolution star-mapper [16];  

 ExoMars a semi-autonomous Mars surface rover [17];  

 BepiColombo Mercury Polar Orbiter [17];  

 Sentinel 1 [19], a pair of imaging radar satellites that will provide an 

all-weather, day-and-night imaging capability for a range of 

services including sea-ice mapping, oil-spill monitoring, ship 

detection, land-surface movement, and disaster management. 

 Sentinel 2 [20], a high-resolution, multi-spectral imaging mission 

which will support operation land monitoring and the emergency 

services. 

 Sentinel 3 [21], a pair of satellites that will provide operational 

marine and land Earth Observation services using optical and 

microwave instruments. 

 Sentinel 5 [22], series of Earth observation satellites.  

NASA is using SpaceWire on:  

 SWIFT a gamma-ray burst observatory, in orbit and making 

scientific discoveries since 2004 [23];  

 Lunar Reconnaissance Orbiter, currently in orbit around the moon 

taking very high resolution images of the surface (these images all 

travel over SpaceWire twice on-board the spacecraft) [24];  

 LCROSS the mission that was deliberately crashed into the south 

pole of the moon and discovered ice there [25];  

 James Webb Space Telescope (JWST) an infra-red telescope 

which will be the biggest satellite ever launched with the exception 

of the international space station, when specifying a data-handling 

network for JWST NASA did an extensive survey of suitable 

technologies and chose SpaceWire [26]; 



 

35 

 Magnetospheric Multi-Scale mission which is a multi-satellite 

mission that will explore the Earth’s magnetosphere [27]; 

 GOES-R, a series of geostationary Earth Observation spacecraft, 

due to replace the USA’s current weather satellites [28]. 

 Plug and Play Sat (PnPSat), which is pioneering rapid assembly, 

integration and deployment technology for tactical and disaster 

monitoring applications [29].  

 TacSat, which is part of the USA operationally responsive space 

(ORS) programme. Both TacSat and PnPSat chose SpaceWire for 

their on-board data-handling networks, in competition with other 

space and terrestrial technologies [30]. 

Japan Aerospace eXploration Agency (JAXA) has adopted SpaceWire for 

all of their spacecraft that require moderate or high data rates, including: 

 BepiColombo Mercury Magnetospheric Orbiter, which is a 

companion to the ESA BepiColombo spacecraft and will measure 

the magnetosphere of Mercury [31]; 

 ASTRO-H, an X-ray telescope being designed to explore the 

structure and evolution of the Universe [32]; 

 SPRINT-A, which is a small satellite that will observe the 

atmosphere of Venus, Mars and Jupiter in extreme ultraviolet 

(EUV) from Earth orbit, at an altitude of about 1,000 kilometers 

[33]; 

 ASNARO is a Japanese optical high-resolution Earth imaging 

mission [34];  

 NEXTAR, which is the one of the first spacecraft to be designed to 

use SpaceWire for all of its on-board communications and is being 

built by NEC [35]. 



 

36 

RosCosmos the Space Agency of the Russian Federation have recently 

approved SpaceWire for use on their spacecraft, regarding SpaceWire as a 

key technology for their future space missions [36]. 

SpaceWire is also being used in countries including Argentina, Brazil, 

Canada, China, India, Korea, Taiwan, Thailand, and many other countries, 

and by the space agencies of individual European member states. A 

number of commercial spacecraft, including Inmarsat [37], are also using 

SpaceWire. 

2.5.2 ESA ExoMars  

ExoMars is an ESA mission to Mars that incorporates a versatile rover. The 

ExoMars rover will carry a comprehensive array of scientific instruments 

dedicated to exobiology and geology research. The Rover will travel several 

kilometres searching for traces of past and present signs of life, collecting 

and analysing samples from within surface rocks and from the subsurface, 

down to a depth of 2 metres [17]. 

 

Figure 13 ExoMars Rover (Courtesy ESA) 



 

37 

The SpaceWire data-handling architecture used on ExoMars is illustrated in 

Figure 14. It follows closely the example architecture of Figure 1. 

PANCAM

MAST Electronics

SpaceWire Router

PROCESSOR
IMAGE

PROCESSOR

SpW

SpWSpW

NAVCAM
L

NAVCAM
R

LOCCAM
Front

LOCCAM
Rear

Micro
Omega

ARM

SpW SpW SpW

SpW

MASS
MEMORY

SpW

 

Figure 14 ExoMars SpaceWire Data-Handling Architecture 

ExoMars carries several cameras to support navigation: PanCam providing 

a panoramic view around the rover, NavCams used to provide stereoscopic 

images from which DEMs can be derived and used for navigation purposes, 

and LocCams used to measure the motion of the rover relative to the 

surface. The processing of this image data is quite intensive so a dedicated 

image processing chip is used to support the processing. SpaceWire is used 

to transfer images from the cameras to mass memory and from there to the 

processor and image processing chip. A SpaceWire router is used to 

interconnect the various SpaceWire units [38]. The instrument arm and the 

Pasteur instrument are also connected to the data-handling system using 

SpaceWire.  

ExoMars makes extensive use of the RMAP protocol [14] for passing data 

from cameras, to mass memory and to/from the processor and image 

processing chip. 



 

38 

2.5.3 NASA Lunar Reconnaissance Orbiter 

The Lunar Reconnaissance Orbiter (LRO) [24] is a NASA mission currently 

in orbit around the moon returning images and other scientific data about 

the lunar surface, see Figure 15. 

 

Figure 15 LRO In Lunar Orbit (courtesy NASA) 

The data-handling architecture of LRO [39] is illustrated in Figure 16. Once 

again this is similar to the example architecture of Figure 1. 

NAC1 NAC2 WAC

LRO Camera (LRCO)

Mini-RF
Radar

ACS LEND

DRLE CRATER LOLA

Command and Data 
Handling Computer

LAMP

Ka-COMMS S-COMMS

HK/IO

1553B

SpW

SpW

SpW

SpWSpW

SpaceWire RouterMass Memory

 

Figure 16 Lunar Reconnaissance Orbiter Data-Handling Architecture 



 

39 

SpaceWire is used to connect the LRO Cameras (Narrow angle Cameras, 

NAC1 and NAC2, and Wide Angle Camera, WAC), and Mini-RF radar 

instrument, to the Command and Data-handling (C&DH) system. SpaceWire 

is also used to pass data from the Command and Data-handling system to 

the Ka and S-Band communications systems. Information from the Lyman-

Alpha Mapping Project (LAMP) instrument is passed into an I/O board in the 

C&DH system (HK/IO) and then sent over SpaceWire to the C&DH 

computer/mass memory. The C&DH computer includes a 4-port SpaceWire 

router for handling the SpaceWire communications. 

An example image from LRO is given in Figure 17. It shows the Apollo 12 

landing site. The Apollo 12 (Intrepid) descent stage is clearly visible in the 

image as is the earlier Surveyor 3 spacecraft. The black lines radiating out 

from Intrepid and pointed to by arrows in other parts of this image are the 

footsteps of the Apollo 12 astronauts. This image travelled over SpaceWire 

twice: from the NAC to the mass memory and from the mass memory to the 

downlink communication system. 

 

Figure 17 Image from LRO Showing Apollo 12 Landing Site (courtesy 

NASA) 



 

40 

2.5.4 BepiColombo 

BepiColombo is a joint ESA/JAXA mission to Mercury which aims to explore 

Mercury, to attempt to understand the planet, and to provide clues to the 

formation of the solar system. BepiColombo is a particularly challenging 

mission because of Mercury’s proximity to the Sun and the harsh 

environment this entails.  

BepiColombo is made of three spacecraft: the Mercury Polar Orbiter (MPO) 

which will study the planet’s surface and internal composition, the Mercury 

Magnetospheric Orbiter (MMO) which will study Mercury's magnetosphere, 

and the Mercury Transfer Module (MTM) which carries the other two 

spacecraft to Mercury. MMO and MPO will separate from the MTM when it 

reaches Mercury. MMO is being developed by Jaxa and the other two 

components are being developed by ESA. 

 

 

Figure 18 BepiColombo MPO and MMO (Courtesy ESA) 



 

41 

The SpaceWire data-handling architecture used on MPO is shown in Figure 

19. 

Mass Memory Unit

SpaceWire Router

O
n

-B
o

a
rd

 C
o

m
p

u
te

r
SpW

P
a

y
lo

a
d

 1

P
a

y
lo

a
d

 2

P
a

y
lo

a
d

 3

P
a

y
lo

a
d

 4

P
a

y
lo

a
d

 5

P
a

y
lo

a
d

 6

P
a

y
lo

a
d

 7

P
a

y
lo

a
d

 8

P
a

y
lo

a
d

 9

SpaceWire RouterSpaceWire Router

SpaceWire Router

S
p

a
ce

W
ir

e
 R

o
u

te
r

SpW SpW

SpW

SpW

SpW

SpW

SpW SpW

X-Band
Telemetry 

Format
Generator

Ka-Band
Telemetry 

Format
Generator

OBC Interface

EGSE Interface

X-Band Downlink Ka-Band Downlink  

Figure 19 Mercury Polar Orbiter Data-Handling Architecture 

MPO uses SpaceWire for the data-handling from its nine science payloads. 

These payload instruments are connected to the on-board mass memory 

unit via point-to-point links and three SpaceWire routers that are integrated 

within the mass memory unit. These routers are also connected to the on-

board computer and to each other in a daisy chain. This enables the on-

board computer to access each of the routers and payload instruments for 

configuration and control purposes. Another router is used to connect the 

mass memory unit to the X-band and Ka-band downlink telemetry format 

generators, which format the payload data before sending it back to Earth. 

This SpaceWire router is also attached to the on-board computer to allow 

the router and downlink telemetry format generators to be configured and 

controlled. SpaceWire links are also used to connect the on-board computer 

to the spacecraft platform and electronic ground support equipment (EGSE). 



 

42 

The SpaceWire routing devices used are the ESA SpW-10X routers (Atmel 

AT7910E). 

Figure 19 has been simplified for clarity. For redundancy purposes the data-

handling units are duplicated with cross-strapping between units to enhance 

overall reliability and avoid possible single-point failures. 

MMO is illustrated in Figure 20 and its data-handling architecture is shown 

in Figure 21. 

 

 

Figure 20 BepiColombo MMO (Courtesy ESA) 



 

43 

Spacecraft
System

Data 
Processing 

Unit 1

Data 
Processing 

Unit 2

MEA1

MEA2

MIA

MSA

HEP-electron

HEP-ion

ENA

MDM

MSASI

MGF-out

MGF-in

PWI

MAST/WPT-E

MEA Mercury Electron Analyser
MIA Mercury Ion Analyser
MSA Mercury Mass Spectrometer Analyser
HEP High Energy Particle Instrument
ENA Energetic Neutrals Analyser
MDM Mercury Dust Monitor
MSASI Mercury Sodium Atmosphere Spectral Investigation
MGF Magnetic Field Investigation
PWI Plasma Wave investigation
MAST/WPA Mast and Wire Probe Antenna Control

Mission Data 
Processor

SpW

 

Figure 21 Mercury Magnetospheric Orbiter Data-Handling Architecture 

Each instrument is connected using a point-to-point link to the mission data 

processor, which contains two data-handling units, each of which contains a 

central processing unit and a SpaceWire router. SpaceWire is used to 

configure, control, gather housekeeping information and collect data from all 

the instruments on MMO. It is also used to pass telecommands from the 

spacecraft system and pass housekeeping and science data to the 

spacecraft system for telemetering back to Earth. Because of the low power 

and mass requirements of MMO a special version of the SpaceWire 

interface was implemented which can start up and continue operation at 2 

Mbits/s. 

2.5.5 ASNARO 

ASNARO is a Japanese optical high-resolution Earth imaging mission with 

ground sampling distances of 0.5m pan-chromatic and 2m multispectral, 

and a swath width of 10km. ASNARO is being developed by the NEC 

Corporation and USEF (Institute for Unmanned Space Experiment Free 



 

44 

Flyer) with funding from the Japanese Ministry of Economy, Trade and 

Industry. The overall objective of the ASNARO project is to develop a next-

generation high-performance mini-satellite bus system based on open 

architecture techniques and manufacturing methodologies to drastically 

reduce the cost and the development period with adoption of up-to-date 

electronics technologies [34]. 

SpaceWire is used on-board ASNARO for all the data-handling. The 

SpaceWire architecture is illustrated in Figure 22. 

SpaceWire Router

Data-Handling 
Computer

Gyro

SpW

S-Band
Telemetry-

Telecommand

Attitude and 
Orbit Control 

Computer

Star 
Tracker

SpW

Reaction
Wheels

SpW

MTO

SpW

Propulsion

SpW

SpaceWire Router

SpW

Heater 
Control

SpW

GPSR

SpW

Power 
Control

SpW

Payload 
Control 

Computer

Payload

X-Band
Downlink

SpW

SpW

SpW SpW

SpW

 

Figure 22 ASNARO SpaceWire Networks 

ASNARO uses SpaceWire for platform and attitude and orbit control 

(AOCS) as well as for payload data-handling. The payload control computer 

is attached to the payload using SpaceWire. The platform electronics 

including the data-handling computer, payload computer, attitude and orbit 

control computer, heater control, GPS receiver, power control and S-Band 

telecommand-telemetry unit, are interconnected using a SpaceWire router. 

A separate SpaceWire network connects the AOCS sensors and actuators 

to the AOCS computer.  



 

45 

3 SpaceWire Links 

In this section the operation of a SpaceWire link is considered in more 

detail. SpaceWire is based on two previous standards IEEE 1355-1995 [2] 

and ANSI/TIA/EIA-644 [3].  

The SpaceWire standard covers the physical connectors and cables, 

electrical properties, and logical protocols that comprise SpaceWire data 

links and networks which are defined in the following normative protocol 

levels 

 Physical Level – SpaceWire connectors, cables, cable assemblies 

and printed circuit board tracks. 

 Signal Level – signal encoding, voltage levels, noise margins, and 

data signalling rates used in SpaceWire. 

 Character Level – data and control characters used to manage 

the flow of data across a SpaceWire link. 

 Exchange Level – protocols for link initialisation, flow control, link 

error detection and link error recovery. 

 Packet Level – definition of how data for transmission over a 

SpaceWire link is split up into packets 

 Network Level – structure of a SpaceWire network and the way in 

which packets are transferred from a source node to a destination 

node across a network. The network level also defines how link 

errors and network level errors are handled. 

In the following subsections each of these protocol levels will be considered 

in turn up to and including the packet level. 



 

46 

3.1 Physical Level 

The physical level of the SpaceWire standard covers cables, connectors, 

cable assemblies and printed circuit board tracks.  SpaceWire was 

developed to meet the EMC specifications of typical spacecraft. 

3.1.1 Cables  

The SpaceWire cable comprises four twisted pair wires with a separate 

shield around each twisted pair and an overall shield. To achieve a high 

data signalling rate with SpaceWire over distances up to 10 m a cable with 

the following characteristics is used: 

 Characteristic impedance of 100 ohms differential impedance, 

which is matched to the line termination impedance. 

 Low signal-signal skew between each signal in a differential pair 

and between Data and Strobe pairs. 

 Low signal attenuation. 

 Low cross-talk. 

 Good EMC performance. 

The structure of a SpaceWire cable is illustrated in Figure 23. 

Conductor 28 AWG

(7 x 36 AWG)

Insulating layer

Twisted pair
(100 ohm differential impedance)

Inner shield around

twisted pair (40AWG)

Outer shield (38AWG)

Outer Jacket

Filler

Jacket

Filler

Binder

 

Figure 23 SpaceWire Cable Structure 



 

47 

One of the drawbacks of SpaceWire is the mass of the cable which is 

around 87 g/m. A new form of SpaceWire cable is currently being developed 

by ESA which is of significantly lower mass. This cable only uses one level 

of shielding. 

SpaceWire is able to operate at 200 Mbits/s over 10m cable. For longer 

distances it is possible to increase the wire gauge of the conductors to 

reduce cable attenuation. 

3.1.2 Connectors 

The SpaceWire connector has eight signal contacts plus a screen 

termination contact.  A nine pin micro-miniature D-type is specified as the 

SpaceWire connector. This type of connector is available qualified for space 

use. The pin-out of the connector is illustrated in Figure 24. 

Dout+

Dout-Sin+

Sin- Sout+

Sout-Din+

Din-

Inner

Shield

1 52 43

6 87 9

 

Figure 24 SpaceWire Connector Pin-Out 

3.1.3 Cable Assemblies 

SpaceWire cable assemblies are made from a length of SpaceWire cable of 

up to 10 m length terminated at each end by nine-pin micro-miniature D-type 

plugs. 



 

48 

1

2

7

6

5

4

3

8

9

Din+

Din-

Sin+

Sin-

GROUND

Sout+

Sout -

Dout+

Dout-

9

8

4

5

6

7

3

2

1

Dout+

Dout-

Sout+

Sout-

GROUND

Sin+

Sin-

Din+

Din-

 

Figure 25 SpaceWire Cable Assembly 

The SpaceWire cable assembly includes an outer-shield which is 360º 

terminated to the connector backshell at each end of the cable. Each twisted 

pair also has a shield (inner-shields) which are connected to pin 3 of the 

connector (signal ground) at one end of the cable only, the end driving the 

twisted pairs. 

This arrangement is far from ideal and in future it is recommended that all 

shields are terminated to the backshell and pin 3 at both ends of the 

connector. 

A photograph of a SpaceWire cable assembly is shown in Figure 26. 

 

Figure 26 Photograph of SpaceWire Cable Assembly 



 

49 

3.1.4 Printed Circuit Board Tracks 

SpaceWire can also be run over printed circuit boards (PCBs) including 

backplanes. Because of the high-speed of SpaceWire signals which have a 

bandwidth of over 1 GHz (at 200 Mbps the signal frequency is 100 MHz and 

that of the signal edges around ten times this, giving 1 GHz) care has to be 

taken with the PCB layout. The following guidelines should be adhered to: 

 The PCB tracks must have 100 ohm differential impedance 

 Track pairs well separated from other tracks 

 No right-angle turns 

 Minimal use of vias 

 Each signal of the differential pair to be tracked identically and kept 

to the same length (< 5 mm) 

 Data and strobe signal pairs to be of the same length (< 5 mm) 

3.2 Signal Level 

The signal level part of the SpaceWire standard covers signal voltage levels, 

noise margins and signal encoding. 

3.2.1 Signal Level and Noise Margins 

Low Voltage Differential Signalling (LVDS) as defined in ANSI/TIA/EIA-644 

[9] is specified as the signalling technique for SpaceWire. LVDS uses 

balanced signals to provide very high-speed interconnection using a low 

voltage swing (350 mV typical).  The balanced or differential signalling 

provides adequate noise margin to enable the use of low voltages in 

practical systems.  The low voltage swing results in relatively low power 

consumption at high speed. LVDS is appropriate for connections between 

chips on a board, boards in a unit, and unit to unit interconnections over 

distances of 10 m or more. The LVDS signalling levels are illustrated in 

Figure 27. 



 

50 

0 1 0

Vin-

Vin+

1.2V typical

(O V differential)

+250 to +400 mV

typical

-250 to -400 mV

typical

Voltage Across 100 ohm Termination Resistor

+100 mV typical 

-100 mV typical 

Transition

Region

Receiver Input Thresholds

O V (differential)

[Vin+ - Vin-]

Figure 27 LVDS Signalling Levels 

A typical LVDS driver and receiver are shown in Figure 28, connected by a 

media (cable or PCB traces) of 100 ohm differential impedance. The LVDS 

driver uses current mode logic.  A constant current source of around 3.5 mA 

provides the current that flows out of the driver, along the transmission 

medium, through the 100 ohm termination resistance and back to the driver 

via the transmission medium. Two pairs of transistor switches in the driver 

control the direction of the current flow through the termination resistor.  

When the driver transistors marked “+” in Figure 28 are turned on and those 

marked “-” are turned off, current flows as indicated by the arrows on the 

diagram creating a positive voltage across the termination resistor. When 

the two driver transistors, marked “-”, are turned on and those marked “+” 

are turned off, current flows in the opposite direction producing a negative 

voltage across the termination resistor.  LVDS receivers are specified to 

have high input impedance so that most of the current flows through the 

termination resistor to generate around 350 mV with the nominal 3.5 mA 

current source. 

-

+

+

-

Vcc

~3.5mA

DRIVER

RECEIVER

100R

+

-

100R Transmission Medium

 

Figure 28 LVDS Operation 



 

51 

LVDS has several features that make it very attractive for data signalling [6]: 

 Near constant total drive current (+3.5 mA for logic 1 and -3.5 mA 

for logic 0) which decreases switching noise on power supplies. 

 High immunity to ground potential difference between driver and 

receiver, LVDS can tolerate at least ±1 V ground difference. 

 High immunity to induced noise because of differential signalling, 

normally using twisted-pair cable. 

 Low EM emission because small equal and opposite currents 

create small electromagnetic fields which tend to cancel one 

another out. 

 Not dependent upon particular device supply voltage(s). 

 Simple 100 ohm termination at receiver. 

 Failsafe operation - the receiver output goes to the high state 

(inactive) whenever 

o the receiver is powered and the driver is not powered, 

o the inputs short together, 

o input wires are disconnected. 

 Power consumption is typically 50 mW per driver/receiver pair for 

LVDS compared to 120 mW for ECL/PECL. 

The signal levels and noise margins for SpaceWire are derived from 

ANSI/TIA/EIA-644 [3] which defines the driver output characteristics and the 

receiver input characteristics. The eye diagram for SpaceWire signals sent 

over 10 m of cable at 200 Mbits/s baud rate is shown in Figure 29. 



 

52 

 

Figure 29 SpaceWire Eye Diagram (200 MHz, 10 m cable) 

3.2.2 Data encoding 

SpaceWire uses Data-Strobe (DS) encoding.  This is a coding scheme 

which encodes the transmission clock with the data into Data and Strobe so 

that the clock can be recovered by simply XORing the Data and Strobe lines 

together.  The data values are transmitted directly and the strobe signal 

changes state whenever the data remains constant from one data bit 

interval to the next.  This coding scheme is illustrated in Figure 30.  The DS 

encoding scheme is also used in the IEEE 1355-1995 [7] and IEEE 1394-

1995 (Firewire) standard [41]. 

The reason for using DS encoding is to improve the skew tolerance to 

almost 1-bit time, compared to 0.5 bit time for simple data and clock 

encoding. 

0 0 1 1 0 1 1 00 1Data

D
S

CLK  

Figure 30 Data-Strobe (DS) Encoding 



 

53 

A SpaceWire link comprises two pairs of differential signals, one pair 

transmitting the D and S signals in one direction and the other pair 

transmitting D and S in the opposite direction. That is a total of eight wires 

for each bi-directional link. 

A bit trace from a SpaceWire link analyser is shown in Figure 31. The yellow 

lines are the data and strobe signals (DIN and SIN). At each transition of the 

strobe line a dotted white line has been drawn vertically from the strobe 

signal over the data signal. The value of the data line between these vertical 

lines or the transitions of the data line is the decoded data value, shown as 

white 0 or 1 on the trace. Bit synchronisation on SpaceWire is therefore 

quite straightforward, but determining the boundaries between SpaceWire 

characters is more difficult in a bit trace. 

 

 

Figure 31 Decoding SpaceWire Data 

SpaceWire performs bit synchronisation by XORing the data and strobe 

signals to form a clock signal, both edges of which are then used to read in 

the values on the data line.  

3.3 Character Level 

In this section the character level of SpaceWire is described. 

3.3.1 SpaceWire Characters 

SpaceWire has two types of characters: data and control characters which 

are illustrated in  

Figure 32. 



 

54 

 Data characters which hold an eight-bit data value transmitted 

least-significant bit first. Each data character contains a parity-bit, a 

data-control flag and the eight-bits of data.  The parity-bit covers 

the previous eight-bits of data or two-bits of control code, the 

current parity-bit and the current data-control flag. It is set to 

produce odd parity so that the total number of 1’s in the field 

covered is an odd number.  The data-control flag is set to zero to 

indicate that the current character is a data character.   

 Control characters which hold a two-bit control code. Each control 

character is formed from a parity-bit, a data-control flag and the 

two-bit control code. The data-control flag is set to one to indicate 

that the current character is a control character. Parity coverage is 

similar to that for a data character. One of the four possible control 

characters is the escape code (ESC).  This can be used to form 

longer control codes.  Two longer control codes are specified and 

valid which are the NULL code and the Time-Code. 

In addition to the data and control characters there are two control codes: 

NULL and time-codes. 

 NULL is formed from ESC followed by the flow control token (FCT).  

NULL is transmitted, whenever a link is not sending data or control 

tokens, to keep the link active and to support link disconnect 

detection. 

 The Time-Code is used to support the distribution of system time 

across a network.  A Time-Code is formed by ESC followed by a 

single data-character. 

 



 

55 

P 0

0

X

1

X

2

X

3

X

4

X

5

X

6

X

7

X

Data Characters

Parity  Bit

Data-Control Flag

LSB MSB

Control Characters

P 1 0 0
FCT      Flow Control Token

P 1 0 1
EOP     Normal End of Packet

P 1 1 0
EEP    Error End of Packet

P 1 1 1
ESC      Escape

P 1 1 1 NULL0 1 0 0

Control Codes

P 1 1 1

0 1 2 3 4 5 6 7

LSB MSB

0 T T T T T T T T1 Time-code

 

Figure 32 Data and Control Characters and Control Codes 

3.3.2 Parity Coverage 

The parity coverage for SpaceWire is a bit unusual, as it follows that of 

IEEE1355-1995. Because of the different lengths of control and data 

character, the parity field of the previous character includes the data/control 

flag of the next character. This is so that the length of the following character 

is validated by the parity bit before that character is decoded. This avoids 

incorrect decoding of a character when its data/control flag is in error. 

P 0 X X XXXX XX P 01 1 P 01 0

Data Character EOP FCT

Parity

Coverage

Parity

Coverage
 

Figure 33 Data and Control Characters Parity Coverage 



 

56 

3.3.3 Character Priority 

Character transmission is prioritised as follows: 

 Time-codes - highest priority 

 FCTs 

 N-Chars 

 NULLs - lowest priority 

Time-codes are highest priority because they are used to transfer time or 

synchronisation information and have to be delivered with low jitter. FCTs 

are higher priority than N-Chars, so that a large amount of data being sent in 

one direction does not stop FCTs being sent, thus causing the other end of 

the link to stop sending data because it has run out of flow control. NULLs 

are the lowest priority as they are only sent to keep the link running and 

synchronised when there is nothing else to send. 

3.3.4 Character Functions 

Characters in SpaceWire are used for three different functions: link control, 

sending packets and sending time-codes.  

The characters and control codes used for link control are the NULL and 

FCT, which are known as L-Chars or Link characters. They are used in the 

Exchange level and not passed up to any higher level. 

The characters and control codes used for sending packets are the data 

characters and end of packet markers (EOP and EEP), which are known as 

N-Chars or Normal characters. These characters are passed up to the 

packet layer. 

The time-codes are used for sending time and synchronization information 

and are passed to the time-code handler of a node or router. 

A SpaceWire link interface interleaves L-Chars, N-Chars and time-codes. N-

Chars from one packet are not interleaved with N-Chars from another 



 

57 

packet. A received character should have its parity checked before it is 

acted upon. 

3.3.5 Character Synchronisation 

Character synchronisation is performed only once when a link is started or 

re-started following a link disconnection. This is illustrated in Figure 34. 

 

Figure 34 SpaceWire Link Start-up and Character Synchronisation 

One end of the link (bottom trace, End B) starts to send Nulls, a specific 

sequence of 8 data bits. The other end detects this sequence, synchronises 

its receiver and starts to send Nulls back (top trace, End A). When End B 

receives these Nulls it synchronises its receiver. Further handshaking is 

done between the two ends of the link which is described later in section 

3.4. The SpaceWire interfaces initially start operating at a line data 

signalling rate of 10 Mbits/s. Once the connection has been made the two 

ends of the link can switch to higher speed operation if required. This is 

clearly visible in Figure 34. 

Before a link sends its first Null both data and strobe lines are set low as 

shown in Figure 35. 



 

58 

0 1 1 1 0 1 0 0

First NULL

D

S
 

Figure 35 SpaceWire Link Start-Up Bit Sequence 

Unfortunately the bit sequence for a Null is not unique in a SpaceWire bit 

sequence so it cannot be reliably used for resynchronisation of the signals 

without first stopping the SpaceWire link and then restarting and re-

synchronising it. 

3.4 Exchange Level 

The SpaceWire exchange level is responsible for exchanging information 

between the two ends of a link. It provides the following functions: link 

initialisation, flow-control and error-handling. 

3.4.1 SpaceWire Link Interface 

At each end of a SpaceWire link is a SpaceWire link interface. A block 

diagram of a link interface is illustrated in Figure 36. 



 

59 

Flow
Control

TX 
FIFO

RX 
FIFO

State
Machine

TX RX

SpW
Packet

TX

SpW
Packet

RX
Time-Code

RX
Time-Code

TX
Packet Level

Exchange Level

Character Level

Signal Level

Physical Lvel

SpaceWire CODEC Interface

 

Figure 36 SpaceWire Link Interface Block Diagram 

The SpaceWire link can send and receive SpaceWire packets and time-

codes once it has been initialised and is running. As described in section 

2.3.2 a SpaceWire packet comprises a destination address, cargo and end 

of packet marker. To send a SpaceWire packet over a SpaceWire link it is 

passed character by character to the transmit FIFO starting with the first 

character of the destination address. SpaceWire packets are received into 

the RX FIFO and can be read out by the application. To send a time-code, it 

is presented to the SpaceWire interface and will be transmitted as soon as 

the current character has finished being transmitted. When time-codes are 

received they are made available via the time-code interface. Time-codes 

need to be validated before they are used, see section 5. 

Before a SpaceWire link can send and receive SpaceWire packets and 

time-codes, it needs to be initialised. This is done under control of the link 



 

60 

state machine. This state machine also manages recovery from any errors 

detected on the link, by re-initialising the link. 

To prevent overflow of the receive FIFO the SpaceWire interface includes 

circuitry to monitor the amount of space available in the receive FIFO and to 

regulate the data being sent from the other end using flow-control tokens.  

3.4.2 Link Initialisation 

Link initialisation is necessary to get both ends of the link fully synchronised 

and ready to receive data and EOP characters and time-codes. Bit 

synchronisation is performed by decoding the data-strobe signals to 

produce the bit clock and data stream. Character synchronisation is 

performed once during link initialisation. Both ends of the link have to be 

character synchronised or the link will automatically reset and attempt to 

resynchronise. 

Following reset the SpaceWire interface is held in the reset state until it is 

instructed to start and attempt to make a connection with the SpaceWire 

interface at the other end of the link.  A connection is made following a 

handshake that ensures both ends of the link are able to send and receive 

characters successfully.  Each end of the link sends NULLs, waits to receive 

a NULL, then sends FCTs and waits to receive an FCT.  Since a SpaceWire 

interface is not allowed to send FCTs until it has received a NULL, receipt of 

one or more NULLs followed by receipt of an FCT means that the other end 

of the link has received NULLs successfully and that full connection has 

been achieved. This exchange of Nulls and FCTs is known as the Null/FCT 

handshake. 

Link initialisation is handled by a state machine in each of the SpaceWire 

interfaces at either end of the SpaceWire link. The basic state machine is 

illustrated in Figure 37. This diagram is simplified to highlight the link 

initialisation procedure. 



 

61 

Ready

Reset Tx

Enable Rx

Started

Send Nulls

Enable Rx

ErrorReset

Reset Tx

Reset Rx

ErrorWait

Reset Tx

Enable Rx

Reset

After 6.4us
Link Disabled

Run

Send FCTs/NChars/Nulls

Enable Rx

After

12.8us

Start Link

gotFCT

Connecting

Send FCTs/Nulls

Enable Rx

gotNull

 

Figure 37 SpaceWire Interface State Machine 

On reset the SpaceWire interface state machine enters the ErrorReset state 

where both the transmitter and receiver in the SpaceWire interface are 

reset. The state machine remains in this state for 6.4 µs to ensure that the 

interface is properly reset, and then moves to the ErrorWait state where it 

keeps the transmitter reset but enables the receiver. The reason for this will 

become clear later. After waiting 12.8 µs in the ErrorWait state the 

SpaceWire interface moves to the Ready state, where it waits for a 

command to start the link. When the SpaceWire interface is instructed to 

start the link (by the local application logic using the SpaceWire interface) it 

moves to the Started state where it begins to send out Nulls. If the other end 

(End B) of the link is also sending Nulls then End A will receive the Null 

(gotNull) and move to the Connecting state. In the Connecting state the 

transmitter is allowed to send Nulls and FCTs. It will send out an initial burst 

of FCTs (see flow control section later on) as part of the initialisation 

handshake. The other end of the link (End B) will have received Nulls and 

with therefore also be in the Connecting state sending out FCTs and Nulls. 

The FCTs will be received at End A and the state machine will move to the 



 

62 

Run state. In the Run state both ends of the link have made a connection (or 

are just about to) and the SpaceWire interface is ready to start transferring 

data. The link will now remain in the Run state until one of the SpaceWire 

interfaces is disabled by the local application logic asserting the Link 

Disabled control bit. 

If the other end of the link (End B) is not ready and does not send Nulls and 

FCTs when expected, End A will wait in the Started or Connecting state for 

12.8 µs and then give up waiting, move back to the ErrorReset state and try 

again to make a connection. This is illustrated in Figure 38. 

Ready

Reset Tx

Enable Rx

Started

Send Nulls

Enable Rx

ErrorReset

Reset Tx

Reset Rx

ErrorWait

Reset Tx

Enable Rx

Reset

After 6.4us
Link Disabled

Run

Send FCTs/NChars/Nulls

Enable Rx

After

12.8us

Start Link

gotFCT

Connecting

Send FCTs/Nulls

Enable Rx

gotNull

After

12.8 us

After

12.8 us

 

Figure 38 SpaceWire Interface State Machine moves to ErrorReset  when 

no Nulls or FCTs received 

To avoid having to set both the Start Link bit in both ends of the link to start 

a link, an Auto-Start mode is included in the SpaceWire state-machine. A 

SpaceWire interface in the Auto-Start mode will automatically start up when 

it receives a bit (gotBit) on its receiver. This functionality is achieved by 



 

63 

adding an extra condition on the transition between the Ready and Started 

states. This addition is illustrated in Figure 39.  

Ready

Reset Tx

Enable Rx

Started

Send Nulls

Enable Rx

ErrorReset

Reset Tx

Reset Rx

ErrorWait

Reset Tx

Enable Rx

Reset

After 6.4us
Link Disabled 

Run

Send FCTs/NChars/Nulls

Enable Rx

After

12.8us

Start Link OR (AutoStart AND GotBit)

gotFCT

Connecting

Send FCTs/Nulls

Enable Rx

gotNull

After

12.8 us

After

12.8 us

 

Figure 39 SpaceWire Interface State Machine with Auto-Start 

One end of the link (End B) has its AutoStart control bit set and has reset, 

moved through ErrorReset and ErrorWait, and is now sitting in the Ready 

state. The other end of the link (End A) has also reset and is waiting in the 

Ready state. When End A gets the command to Start Link, it moves to the 

Started state and begins sending Nulls. End B receives the start of the Null 

and gotBit is asserted causing it to also move to the Started state. The 

Null/FCT handshake now takes place with both ends moving through 

Started and Connecting to Run. 

When one end of the link is trying to make a connection, i.e. Start Link is 

asserted, and the other end of the link (End B) is not ready to make a 

connection for whatever reason, End A will send Nulls for 12.8 µs and then 

go silent for 19.2 µs (6.4 µs + 12.8 µs) repeatedly. Observing bursts of Nulls 



 

64 

from one end of a link while nothing is being sent in the other direction is a 

clear indication that one end is trying to send and the other end is not 

responding. This could be because that end of the link does not have its 

Auto-Start control bit asserted, or alternatively its Disable bit is asserted.  

The link initialisation sequence is shown in Figure 40. The sequence of 

characters under A->B Event is for one direction of the link (characters 

being sent from End A to End B) while that under B->A Event is the other 

direction.  

1. The link is disconnected causing both ends of the link to reset, moving 

through the ErrorReset and ErrorWait states to the Ready state. 

2. End B of the link has Start Link asserted and so moves to the Started 

state and begins sending Nulls, which are received at End A initially 

causing GOT-BIT to be asserted and then a series of Nulls to be 

received. 

3. End A has AutoStart asserted, so as soon as it has received the first bit 

(GOT-BIT) it moves to the Started state and sends at least one Null, 

which is received at End B. 

4. When End A receives a Null, and after it has sent at least one Null in 

response, it moves to the Connecting state and is able to send one or 

more FCTs. 

5. The Null from End A is received at End B, so End B moves to the 

Connecting state, and is able to send one or more FCTs. 

6. The FCT from End A is received at End B, so End B moves to the Run 

state and switches to the required link operating speed (note the 

change in character timing). 

7. The FCT sent from End B is received at End A, so End A moves to the 

Run state and switches to the required link operating speed. The link is 

now running in both directions. 



 

65 

1
2

3

4
5 6

7

 

Figure 40 Link Initialisation 

Note that during initialisation at least one Null must be sent before FCTs are 

sent, although this is not clearly stated in the SpaceWire standard. 

If there is noise on the input to a receiver, possibly caused by the cable 

being disconnected, the random noise might occasionally correspond to a 

Null followed by an FCT. If the receiver is in auto-start mode, this will cause 

the receiver to start up and begin sending Nulls and FCTs. Eventually the 

noise will cause a parity error and a disconnect. If a SpaceWire interface is 

observed to periodically send short bursts of characters, it is likely that the 

cause is noise on its receiver inputs. To some extent unwanted noise can be 

overcome using biasing resistors on the receiver inputs. 

3.4.3 Link Flow Control 

A transmitter is only allowed to transmit N-Chars (normal characters, which 

are data characters, EOP or EEP), if there is space for them in the receive 

FIFO at the other end of the link.  The receive FIFO indicates that there is 

space for eight more N-Chars by requesting the link transmitter to send a 



 

66 

flow control token (FCT). The FCT is received at the other end of the link 

(end B) enabling the transmitter at end B to send up to eight more N-Chars. 

If there is more room in the receive FIFO, multiple FCTs can be sent, one 

for every eight spaces in the receive buffer.  Correspondingly, if multiple 

FCTs are received then it means that there is a corresponding amount of 

space available in the receive FIFO e.g. four FCTs means that there is room 

for 32 N-Chars. Each FCT is exchanged in this way for 8 N-Chars. The 

operation of flow control is illustrated in Figure 41. 

 

1

2

 

Figure 41 Flow Control With FCTs 

The FCT sent by End B and received by End A (1), permits End A to send 

eight more N-Chars (2). The FCT goes in the opposite direction to the data 

that it is exchanged for. The SpaceWire link in Figure 41, is sending data in 

both directions of the link so FCTs are also being sent in both directions. 

A SpaceWire interface is permitted to have a maximum of seven 

outstanding FCTs, corresponding to 56 N-Chars. Buffers larger than this can 

be used if required, but seven FCTs are more than enough to support 



 

67 

continuous data transfer across a link. Smaller FIFOs may also be used, in 

which case fewer than the maximum of seven FCTs will ever be 

outstanding. 

3.4.4 Link Error Handling 

There are several types of error that can occur in a SpaceWire link: 

 Disconnect error – the link is disconnected in one or both 

directions, so data or Nulls are not received. 

 Parity error – a received character contains a parity error. 

 Escape error – an Escape character is received which is followed 

by another Escape, an EOP, or EEP, which are character 

sequences that are not allowed. 

 Credit error – an N-Char arrives when there is no room for it in the 

receive FIFO. 

Link disconnection is detected when following reception of a data bit no new 

data bit is received within a link disconnect timeout window (850 ns). Once a 

disconnection error has been detected, the link attempts to recover from the 

error. 

Parity errors occurring within a data or control character are detected when 

the next character is sent, since the parity bit for a data or control character 

is contained in the next character. Once a parity error has been detected, 

the link attempts to recover from the error.  

Following an error or reset the link attempts to re-synchronise and restart 

using an “exchange of silence” protocol (see Figure 42). The end of the link 

that is either reset or that finds an error, ceases transmission.  This is 

detected at the other end of the link as a link disconnect and that end stops 

transmitting too. The first link resets its input and output for 6.4 s to ensure 

that the other end detects the disconnect. The other end also waits for 6.4 

s after ceasing transmission. Each link then waits a further 12.8 s before 



 

68 

starting to transmit. These periods of time are sufficient to ensure that the 

receivers at both ends of the link are ready to receive characters before 

either end starts transmission. The two ends of the link go through the 

NULL/FCT handshake (see Figure 40) to re-establish a connection and 

ensure proper character synchronisation. 

Reset Tx
Reset Rx

Reset Tx
Enable Rx

Send NULLs
Enable Rx

Send FCTs
Enable Rx

NORMAL
OPER.

Error Detected

After 6.4 µs

After 12.8 µs

NULL Received

Reset Tx
Reset Rx

Reset Tx
Enable Rx

Send NULLs
Enable Rx

Send FCTs
Enable Rx

NORMAL
OPER.

Disconnect Detected

After 6.4 µs

After 12.8 µs

NULL Received

One End
of Link

Other End
of Link

FCT Received

FCT Received

Exchange
of Silence

NULL/FCT
Handshake

 

Figure 42 Link Restart 

Recovery from errors is controlled by the state machine in the SpaceWire 

interface. The complete state machine is shown in Figure 43. 



 

69 

Reset

Ready
Reset Tx

Enable Rx

Started
Send NULLs
Enable Rx

ErrorReset
Reset Tx
Reset Rx

ErrorWait
Reset Tx

Enable Rx

[Link Enabled]

After 6.4 µs

After
12.8 µs

gotNULL

RxErr OR
CreditError OR
[Link Disabled] 

Run
Send Time-Codes/

FCTs/N-Chars/NULLs
Enable Rx

RxErr OR
gotFCT OR

gotN-Char OR
gotTime-Code

gotFCT

Connecting
Send FCTs/NULLs

Enable Rx

RxErr OR                           
gotFCT OR                 

gotN-Char OR
gotTime-CodeRxErr OR

gotFCT OR
gotN-Char OR
gotTime-Code OR
after 12.8 µs

RxErr OR
gotN-Char OR

gotTime-Code OR
after 12.8 µs               

 

Figure 43 SpaceWire Interface State Machine Error Recovery 

The error conditions that can occur are shown in red. Any error that is 

detected results in a transition to the ErrorReset which starts the error 

recovery cycle.  

RxErr is a Disconnect Error, Parity Error, or Escape Error. 

Disconnect Error detection is enabled following link reset, only after the first 

bit has been received. 

An RxErr can be detected in any state, except ErrorReset, and will result in 

a transition to ErrorReset. 

In the ErrorWait, Ready and Started states it should not be possible to 

receive an FCT, N-Char or time-code, because the link has not yet been 

fully initialised. If any of these characters are received it is an error and 

results in a transition to the ErrorReset state. 



 

70 

In the Connecting state it should not be possible to receive N-Chars or time-

codes as the link is only partially connected, an FCT must be received 

before any of these other characters, finishing link initialisation and causing 

a transition to the Run state. If any N-Chars or time-codes are received in 

the Connecting state, it is an error and the state machine moves to the 

ErrorReset state. 

Detection of Parity Error, Escape Error, gotFCT, gotN-Char, and gotTime-

Code are only enabled after the first Null has been received, i.e. gotNULL 

asserted.  

Thus  

RxErr OR gotFCT OR gotN-Char OR gotTime-Code 

is really  

RxErr OR (gotNULL AND (gotFCT OR gotN-Char OR gotTime-Code)). 

3.4.5 Auto-Start 

The Auto-Start facility in a SpaceWire link interface is provided to permit the 

far end of the link to initiate starting of the link. One end of the link is set to 

Auto-Start. Sometime later the other end of the link is started and begins 

sending Nulls. These are received by the end of the link set to Auto-Start, 

which responds to the reception of Nulls by starting and sending Nulls. 

Initialisation of the link takes place and data can then be sent over the link. 

Both ends of a SpaceWire link can be set to Auto-Start, in which case either 

end can be started and cause link initialisation. 

Without the Auto-Start facility both ends of the link would have to be started 

specifically. One end could be started, sending Nulls for a long time before 

the other end is also started. This wastes power. 

The condition for enabling a link to begin initialisation is: 



 

71 

 [Link Enabled] = ( NOT [Link Disabled] ) AND ([LinkStart] OR ( 

[AutoStart] AND gotNULL )) 

Where: 

 LinkDisabled is a flag set by software or hardware to indicate that 

the link is disabled, 

 LinkStart is a flag set by software or hardware to start a link, 

 AutoStart is a flag set by software or hardware to request the link to 

start automatically on receipt of a NULL, 

 gotNULL is a flag indicating that the link interface has received a 

NULL. 

If the link is disabled, LinkDisabled asserted, the other flags are ignored and 

the link will not attempt to start initialisation, until LinkDisabled is de-

asserted. 

3.5 Packet Level 

The packet level of SpaceWire simply defines the fields in a SpaceWire 

packet: destination address, cargo and end of packet marker, as illustrated 

in Figure 44. 

Destination Address Cargo EOP

 

Figure 44 SpaceWire Packet Format 

The "Destination Address" is the first part of the packet to be sent and is a 

list of data characters that represents either the identity of the destination 

node or the path that the packet has to take through a SpaceWire network 

to reach to the destination node. In the case of a point-to-point link directly 

between two nodes (no routers in between) the destination address is not 

necessary. 



 

72 

The "Cargo" is the data to be transferred from source to destination. Any 

number of data bytes can be transferred in the cargo of a SpaceWire 

packet. 

The "End of Packet" (EOP) is used to indicate the end of a packet. The data 

character following an End of Packet is the start of the next packet. There is 

no limit on the size of a SpaceWire packet.  

In addition to the normal end of packet marker (EOP), there is another end 

of packet marker, the Error End of Packet marker (EEP), which indicates 

that the packet has been terminated prematurely because of an error that 

occurred as the packet traversed a SpaceWire link or network. A packet 

terminated by an EEP is illustrated in Figure 45. 

Destination Address Cargo - incomplete EEP

 

Figure 45 SpaceWire Packet Terminated by EEP 

When a packet is terminated by an EEP it is likely that the Cargo is 

incomplete and may contain some erroneous data characters. It is 

also possible for an error to occur at the start of the packet, while 

sending the destination address. In this case, there is no cargo, just 

an incomplete destination address followed by an EEP. If this 

incomplete destination address is a path address, as the packet 

terminated by the EEP moves across the SpaceWire network, each 

router will forward the packet and delete the leading character of the 

packet. Eventually all the destination address characters will be 

deleted before the packet arrives at its destination, since it was an 

incomplete destination address. All that is left is an EEP. Since a 

router cannot know where to forward an EEP on its own it will simply 

delete the EEP. The prematurely terminated packet will then have 

disappeared completely. 



 

73 

3.6 Link error Recovery 

The handling of link errors by the link state machine is described in section 

3.4.4. This section considers what happens to a packet that is travelling 

across a link when an error occurs. 

If an error is detected by a link interface, the following sequence of events 

takes place to recover from the error: 

1. Detect Error 

A Disconnect, Parity, Escape, or Credit error is detected. 

Figure 46 shows the two directions of the link transferring packets, from an 

end user buffer passing data to the SpaceWire transmitter, via the 

SpaceWire interface transmit FIFO, across the link, into the SpaceWire 

interface receive FIFO at the other end of the link, and on into the end user 

buffer taking data from the receiver. In the left to right direction of the link the 

head of a packet is in the receive user buffer and the tail of the packet with 

the EOP is in the transmit end user buffer. An error has just occurred in this 

direction of the link. 

FIFOsBUFFERS FIFOs BUFFERSLINK

EOP

EOP
TX

RX TX

RX

1. Detect Error
ERROR EOP

EOP

Figure 46 Link error recovery: error detection 

2. Disconnect Link 

The error detected in the receiver on the right hand side of Figure 46, 

causes the transmitter at that end to disconnect, resulting in a disconnect 

error occurring at the other end of the link. Both ends of the link are now 

disconnected as illustrated in Figure 47. 

 



 

74 

FIFOsBUFFERS FIFOs BUFFERSLINK

EOP

EOP
TX

RX TX

RX

2. Disconnect
EOP

EOP

Figure 47 Link error recovery: link disconnection 

3. Terminate Packets with EEPs 

The information in the receive FIFOs has an EEP appended to it, as soon as 

there is room in each FIFO to add one. This terminates the received part of 

the packet, so that it can continue on its way through the SpaceWire 

network. This is illustrated in Figure 48. 

FIFOsBUFFERS FIFOs BUFFERSLINK

EOP
TX

RX TX

RX

3. Add EEP to RX FIFO

EEP

EEPEOP EOP

EOP

Figure 48 Link error recovery: terminate packets with EEPs 

4. Spill Rest of Packet 

The remainder of the packet which has not yet been transferred across the 

link has to be discarded, since one or more N-Chars will have been lost or 

corrupted due to the error on the link. The tail end of the packet that has not 

yet been sent across the link contains valid data, but its destination is not 

clear: for example, it could have been an EOP that was lost when the error 

occurred on the link. Since the destination is unknown all that can be done 

with the tail end of the packet is to discard it. Data is read by the transmitter 

and spilt until the EOP (or EEP) is reached. The character following the 

EOP will be the destination address at the start of the next packet. The 

result after spilling the packet is shown in Figure 49. 

 

 



 

75 

FIFOsBUFFERS FIFOs BUFFERSLINK

EOP

EOP
TX

RX TX

RX

4. Delete Data in TX until next EOP
EOP EEP

EEP

 

Figure 49 Link error recovery: spill rest of packet 

5. Reconnect 

Now the SpaceWire link has tidied up after the error, the link can be re-

initialised and the connection re-established. This is shown in Figure 50. 

FIFOsBUFFERS FIFOs BUFFERSLINK

EOP
TX

RX TX

RX

5. Reconnect
EEP

EEP

Figure 50 Link error recovery: reconnect 

6. Continue Packet Transfer 

With the link restarted the next packet, whose head and destination address 

is waiting in the transmit FIFO, can be sent. Normal operation has resumed. 

This is shown in Figure 51. 

FIFOsBUFFERS FIFOs BUFFERSLINK

EOP

EOP
TX

RX TX

RX

6. Continue Operation
EEP

EEP

Figure 51 Link error recovery: continue operation 

The error recovery mechanism works across networks comprised of a 

number of routing switches.  Only the link on which the error occurs is reset 

(disconnect/reconnect). All the other links continue operation.  Normally only 

the packet in which the error occurred is partly lost and all other packets 

remain valid.  In some cases more than one packet can be lost due to the 

time taken for link disconnection. 



 

76 

If the header byte (i.e. first byte after an EOP or EEP) is corrupted, the 

entire packet is lost and the data is not propagated across a network. The 

routing switch simply disposes of the packet.  

If the error occurs in a EOP (or EEP), two packets are affected: the one 

before the EOP where all the data is sent but no EOP is received, and the 

following one because the link transmitter “spills” the packet until the next 

EOP (or EEP). 

If the error occurs in a NULL or FCT inserted in the data stream for a 

packet, the packet being sent is discarded from that point on.  This is 

because it is not known what the character was before it was corrupted. 

The time taken for complete recovery from the error on the link will depend 

upon how long it takes to spill the tail end of the packet being transferred 

when the link error occurred, which depends on the size of that packet. The 

tail may have to be pulled out from the packet source, through one or more 

routers making up a SpaceWire network as it is being split. 

The decision about what to do with the packet that terminates with the EEP 

is up to the user application.   



 

77 

4 SpaceWire Networks 

SpaceWire networks are built from SpaceWire links, nodes and routers. The 

links and routers are there to connect together nodes so that they can 

exchange information and work together to perform some required function. 

4.1 SpaceWire Nodes 

A node is a piece of equipment that is using the services of a SpaceWire 

link or network. It is a source or destination of SpaceWire packets, an end-

point on a SpaceWire network. For example, an instrument, mass-memory 

unit or processor attached to a SpaceWire network is a SpaceWire node. 

A node can have more than one SpaceWire interface and may have more 

than one logical address. 

4.2 SpaceWire Routing Switch 

A SpaceWire router connects together many nodes and provides a means 

of routing packets from one node to one of many other possible nodes. A 

SpaceWire router comprises a number of SpaceWire link interfaces and a 

switch matrix. The switch matrix enables packets arriving at one link 

interface to be transferred to and sent out of another link interface on the 

router. Each link interface may be considered as comprising an input port 

(the link interface receiver) and an output port (the link interface transmitter) 

as illustrated in Figure 52. 



 

78 

SWITCH
MATRIX

INPUT
PORT 1

INPUT
PORT 2

INPUT
PORT 3

INPUT
PORT 4

INPUT
PORT 5

INPUT
PORT 6

OUTPUT
PORT 1

OUTPUT
PORT 2

OUTPUT
PORT 3

OUTPUT
PORT 4

OUTPUT
PORT 5

OUTPUT
PORT 6

LINK INTERFACE 1 

LINK INTERFACE 6 

Figure 52 Router Switch Matrix 

A SpaceWire router transfers packets from the input port of the switch 

where the packet arrives, to a particular output port determined by the 

packet destination address.  A router uses the leading data character of a 

packet (one of the destination identifier characters) to determine the output 

port of the router to which the packet is to be routed. If there are two input 

ports waiting to use a particular output port when the previous packet has 

finished being sent then an arbitration mechanism in the output port decides 

which input port is to be served. 

4.3 Routing Tables 

A routing table within the router is used to translate from the destination 

address at the front of a packet to the port number through which the packet 

will be sent. The router addresses are assigned as shown in Table 1.   

 



 

79 

 

The internal configuration port is used to access configuration and status 

information of the router. A SpaceWire packet arriving at any port of the 

router with a leading destination address value of 0 will be routed to the 

configuration port. Configuration information that can be accessed via the 

configuration port includes the routing table, enabling the routing information 

to be programmed over the SpaceWire network. All SpaceWire routers have 

a configuration port. Since the configuration port is both the source and 

destination of SpaceWire packets, that makes the configuration and status 

circuitry of a router a node.  

The physical output ports are the actual SpaceWire ports on the router. For 

connecting to equipment local to the router it is not always necessary to use 

a SpaceWire link. In this case, a FIFO port can be used instead. The FIFO 

port is bi-directional and behaves like a SpaceWire port as far as the router, 

but there is no SpaceWire link attached to it. Instead, some user application 

connects directly to the FIFO port. The physical output ports of a router 

include both the SpaceWire ports and the FIFO ports. The physical output 

ports are always numbered from one upwards and normally the SpaceWire 

ports are first. So a router with four SpaceWire ports and two FIFO ports 

would number the SpaceWire ports 1 to 4 and the FIFO ports 5 and 6. FIFO 

ports are also called external or parallel ports, meaning external to the 

Table 1 Router Addresses 

Address Range Function 

0 Internal Configuration Port 

1-31 (01-1F hex) Physical Output Ports 

32-254 (20-FE hex) Logical Addresses, which are mapped 

on to the physical output ports 

255 (FF hex) Reserved 



 

80 

SpaceWire network, and parallel as opposed to the serial SpaceWire link. A 

router is allowed to have a maximum of 31 physical ports, hence the 

physical output ports are numbered 1 to 31 maximum. 

Logical addresses are mapped by the routing table to physical output ports. 

It is necessary to be able to distinguish between path and logical addresses 

so that the router can handle them appropriately. This is done in a simple 

way: the value of the leading address character of a packet determines 

whether it is a path or logical address, if it is in the range 0 to 31 it is a path 

address, if it is in the range 32 to 255 it is a logical address. A path address 

is used directly to determine the output port that the packet is to be 

forwarded through. A logical address is used as an index into the routing 

table from which the physical port number is determined. The packet is then 

forwarded through the specific output port. 

Logical address 255 is reserved for future applications and should not be 

used. 

An example routing table for a router with four SpaceWire ports and the 

configuration port is illustrated in Figure 53. A ‘1’ in the table maps an 

address to an output port number. The configuration port (port 0) is 

accessed only via path addressing with the address 0. Ports 1 to 4 are 

accessed using path addresses 1 to 4 respectively. Path addresses beyond 

address 4 have no meaning in a 4-port router and give rise to a routing 

error. Logical addresses can be used to access any of the four output ports 

depending on how the routing table is programmed. For example in Figure 

53, logical address 33 has been programmed to port 4. Any packets arriving 

with address 33 will be routed to output port 4. 



 

81 

Address Port 0 Port 1 Port 2 Port 3 Port 4

0 1 0 0 0 0

1 0 1 0 0 0

2 0 0 1 0 0

…

32 0 0 1 0 0

33 0 0 0 0 1

34 0 1 0 0 0

255 0 0 0 0 0

…

Configuration

Path

Addressing

Logical

Addressing

 

Figure 53 Routing Table for 4-Port Router 

4.4 Group Adaptive Routing 

SpaceWire routers can implement group adaptive routing. When two or 

more output ports lead, either directly or indirectly, to the same destination, 

these output ports may be configured as a group. When a packet arrives at 

an input port for routing out of an output port that is busy, any other output 

port in the same group as the addressed output port may be used to forward 

the packet.   

A routing table in a router that implements group adaptive routing is 

illustrated in  

Figure 54. Logical address 33 has two output ports assigned to it. When a 

packet with this logical address is received the router has the choice of 

routing the packet out of port 3 or port 4. 



 

82 

Address Port 0 Port 1 Port 2 Port 3 Port 4

0 1 0 0 0 0

1 0 1 0 0 0

2 0 0 1 0 0

…

32 0 1 1 0 0

33 0 0 0 1 1

34 0 1 1 0 0

255 0 0 0 0 0

…

Configuration

Path

Addressing

Logical

Addressing

 

Figure 54 Routing Table with Group Adaptive Routing 

4.5 Wormhole Routing 

SpaceWire routing switches employ wormhole routing. When a packet starts 

to arrive at an input port of a router, its destination address is looked at 

immediately. If the output port that is to be used to forward the packet 

towards its destination is not currently being used, the head of the packet is 

sent to that output port straightaway, with the rest of the packet following as 

it is received at the input port. There is no buffering of complete packets in 

the router, neither before, nor after switching. 

Wormhole routing has a number of advantages over other approaches like 

store and forward:  

 No packet buffering 

 Little buffer memory 

 Can support packets of arbitrary size 

 Rapid switching 



 

83 

Wormhole routing suffers from one main problem, that of blocking. If the 

output port that the packet is to be forwarded through is not ready or is 

currently being used, the packet has to wait until it is ready or the packet 

currently flowing through it has finished. Since the tail of a packet can be 

spread out through the network, not only is the waiting packet halted, but 

that packet blocks any other packet in the network that is waiting to use the 

links that it is currently occupying. This is illustrated in Figure 55. 

NODE 1

NODE 2

NODE 3 NODE 4

NODE 6

NODE 5

ROUTER 1 ROUTER 2

1

2

5

4

1

2

5

4

33

Figure 55 Packet Blocking 

A long packet it being transferred from node 1 to node 5, shown in blue. 

Another packet, shown in red, wants to go from node 2 to node 5, but since 

the link from router 2 to node 5 is already in use, the red packet is blocked in 

router 2.  A third packet, shown in yellow, wants to go from node 3 to node 

6. This does not use any of the links being occupied by the first packet 

(blue), but it is blocked by the waiting packet (red) in router 1 since it has to 

travel over a link from router 1 to router 2. Once there is a blockage its effect 

can multiply, causing further blockage throughout a network. 

Blocking can occur for several reasons: 

 A large packet is being sent; 

 The destination of the packet is not ready to receive it; 

 Something has gone wrong on the network, e.g. a link failure, so 

that a packet cannot move forward across the failed link. 



 

84 

There are some strategies that help to avoid blocking a network: 

 Split large packets up into many smaller ones, e.g. an image could 

be sent as a series of image lines; 

 Make sure that the destination is ready before sending the packet, 

which can be done using an end-to-end flow control mechanism; 

 If the destination is not ready to receive a packet it can simply 

throw the packet away, this can be combined with a retry 

mechanism to implement flow control, although it might result in 

inefficient use of network bandwidth if the destination is often not 

ready. 

 If a packet does get blocked for longer than might be expected, 

indicating that a fault has occurred, detect this using a watchdog 

timer and discard the blocked packet. 

4.6 Header Deletion 

Header deletion is the removal of the first data character of a packet after it 

has been used to perform its routing function. Header deletion is always 

employed in a router for path addressing. Once a path address has been 

used it is no longer needed and is discarded, exposing the next path 

address character to be used by the next router encountered on the 

network. 

Header deletion is not normally applied to logical addresses as the logical 

address gives the identity of the destination node. The one logical address 

character is used by each router encountered by the packet as an index into 

the router’s routing table, so that the router can forward the packet towards 

its intended destination. This does limit the number of nodes to 223, which is 

considered plenty for most spacecraft applications. 

There is, however, a means of extending the number of logical addresses. 

Regional logical addressing uses a logical address in one region of a 



 

85 

network, but if a packet crosses the boundary of one region into another 

region, its leading logical address is deleted, exposing another logical 

address character that is used in the next region. This is illustrated in Figure 

58. 

Node 
64 A

Node 
71

Node 
92

Node 
88

Node 
201

Node 
43

Router
1

Node 
222

Node 
84

Node 
33

Node 
89

Node 
207

Node 
211

Router
3

Node 
213

Node 
64 B

Node 
84

Node 
97

Node 
88

Node 
216

Node 
43

Router
4

Node 
39

Router
2

Region
220 

Region
221 

 

Figure 56 Regional Logical Addressing 

Figure 56 shows a large network. Above the dashed line all the node logical 

addresses are unique, but below the dashed line some of the logical 

addresses are repeats of those above the line. Node 71 wants to send one 

packet to node 64 above the line (node 64 A) and another packet to node 64 

below the line (node 64 B). How can this be done? If the routers above the 

line are configured to route to node 64 A, a packet sent from node 71 with 

destination address 64 will end up at node 64 A. 

To reach node 64 B the network is split into two regions: above the line and 

below the line. In each region the node logical addresses must all be 

unique. Each region is then given a logical address, which should not be 

assigned to any of the nodes. The region above the line is given logical 

address 220 and that below is given 221. Now to route from node 71 to 



 

86 

node 64 B, the packet is given two cascaded logical addresses, the first of 

which is the logical address of the destination region (where the target node 

lies) and the second of which is the logical address of the destination node 

in that region. So for node 64 B this is 221, 64. The packet sent is then: 

 221, 64, cargo, EOP 

The routers in region 220 are all configured to route any packet with logical 

address 221 first to router 2 and then on to router 4. Router 2 is 

programmed so that when the packet is forwarded from router 2 to router 4, 

its leading address character is stripped off, revealing the second address 

character: 

 64, cargo, EOP 

The routers in region 221 are configured to route packets with logical 

address 64 to the local node with that logical address, i.e. to node 64 B. 

To use regional logical addressing it is necessary to: 

1. Split the network into regions which are each given a logical 

address 

2. Within a region nodes must have unique logical addresses 

3. Nodes in two different regions can have the same logical address 

4. When routing a packet from one region to another the router must 

strip off the leading destination address character. This has to be 

specifically configured in the router. 

5. It is possible to cross regions to reach a destination, provided there 

is one logical address for each region. 

For most spacecraft applications regional logical addressing is not 

necessary as there is normally far fewer than 223 nodes. 



 

87 

4.7 Time-code Broadcast 

As well as forwarding SpaceWire packets towards their destinations, a 

SpaceWire router also broadcasts time-codes. Time-codes and the way in 

which they are broadcast by a SpaceWire router are described in section 5. 

Each router contains a time-code register (also called a time-code counter). 

When a time-code arrives on a port its value (6-bits carried in the data 

character of the time-code, see section 3.3.1) is compared to that of the 

time-code register. If it is one more than the time-code register, the time-

code is valid and is forwarded out of all of the physical ports of the router, 

except the configuration port and the port that the time-code arrived on. This 

broadcasts the time-code over the network. The time-code register is then 

updated with the value of the received time-code. If the time-code is not one 

more than the time-code register, the value of the time-code is loaded into 

the time-code register, but the time-code is not forwarded. This prevents 

time-codes repeatedly circulating around a network that contains a loop via 

one or more routers. It also provides a method for recovering from time-

codes that go missing, for whatever reason. Note that some routers can be 

configure to broadcast time-code on specific ports only. This facility was 

included to permit operation with legacy IEEE-1355 devices which could 

accept SpaceWire packets, but did not understand time-codes. 

There is normally one time-code register in a router. Some implementations 

have, however, provided four time-code registers in the router with the top 

two-bits of the time-code data character being used to determine which of 

the four time-code registers to use. This permits up to four sets of time-

codes to be broadcast simultaneously across the network. Strictly this 

violates the SpaceWire standard as the standard reserves the top two-bits 

of the time-code. These two-bits are likely to be used for other purposes in 

future, including interrupt signalling. 



 

88 

4.8 Router Configuration 

A router is configured via its configuration port. The SpaceWire standard 

does not specify how a router should be configured, but it is common 

practice for this to be done using the SpaceWire remote memory access 

protocol (see section 6.2). This provides a standard means of reading and 

writing to registers in the configuration port, but it does not specify the 

arrangement and function of registers in the configuration port. Work is 

currently being done on a SpaceWire plug and play standard, which aims to 

standardise SpaceWire network configuration. In the meantime each router 

configuration space has a proprietary arrangement of registers. 

4.9 Packet Distribution 

The SpaceWire standard specifies a means of using a router to copy and 

distribute a SpaceWire packet to several nodes attached to different ports of 

the router. This was included for the specific purpose of distributing the 

same data to several processors in a parallel processing system. It can 

cause significant problems when used in a SpaceWire network and its use 

is not recommended. For example, if a packet is arriving at one port of the 

router and being distributed out of several other ports and a node attached 

to one of these ports cannot accept any more data, for whatever reason, the 

data going to all of the processors will halt. Any fault is effectively multiplied. 

4.10 Example SpaceWire Router 

In this section the architecture of the ESA SpW-10X SpaceWire router ASIC 

is described and then some specific features added into this router to 

enhance its capabilities are explained. 

4.10.1 SpW-10X Architecture 

The architecture of the SpaceWire router ASIC is illustrated in Figure 57. 



 

89 

Non-blocking

Crossbar

Switch

Control

Logic Routing

Table

Status/Error

Registers

Configuration

Port

Control

Registers

Status

Outputs

Tick

Counter

Time-Code

Inputs/Outputs

SpW Port 1

SpW Port 2

SpW Port 3

SpW Port 4

SpW Port 5

SpW Port 6

SpW Port 7

SpW Port 8

SpaceWire

Interfaces 

External Port

Output FIFO

Input FIFOFIFO Port

Input/Output

External Port

Output FIFO

Input FIFO
FIFO Port

Input/Output

Figure 57 ESA SpW-10X SpaceWire Router ASIC Architecture 

There are eight SpaceWire ports, two external ports and an internal 

configuration port in the SpaceWire router. A low latency, worm-hole routing, 

non-blocking, crossbar switch enables packets arriving at any SpaceWire 

port, external port or generated in the configuration port to be directed out of 

any other SpaceWire or external port or to be routed to the configuration 

port. 

The SpaceWire ports are compliant with the SpaceWire standard [2] 

providing high-speed, bi-directional communications. The FIFO ports each 

comprise an input FIFO and an output FIFO and can receive and send data 

characters and end of packet markers. A time-code port is also provided 

along with a time-counter to facilitate the propagation of time-codes, see 

section 5. When a valid time-code arrives at a router port it is sent out of all 

the other SpaceWire ports and a TICK_OUT signal is generated at the time-



 

90 

code port. The router can operate as a time-code master using the TICK_IN 

provided in the time-code port. 

The configuration port is accessible via any of the SpaceWire or external 

ports. It contains registers which control the operation of the SpaceWire 

ports, external ports and the crossbar switch. The configuration port holds 

status registers for the various ports and the switch. These registers can be 

read using a configuration read command to determine the status of the 

router and to access error information. Status and error information can also 

be selected for output on several status pins. The routing table is accessed 

via the configuration port. The logical address port mappings and priority 

bits can be set in the routing table. The routing table is used to control group 

adaptive routing and priority arbitration in the crossbar switch. In the SpW-

10X Router configuration is done using the SpaceWire Remote Memory 

Access Protocol (RMAP), see chapter 6. 

The SpW-10X was designed by the University of Dundee, transferred to 

radiation hard technology by Austrian Aerospace, and is manufactured by 

Atmel and sold as the AT7910E device. It is packaged in a space qualified 

256 pin QFP package, see Figure 58. 

 

 

Figure 58 Photograph of SpW-10X Router ASIC 



 

91 

4.10.2 Watchdog Timers 

Watchdog timers are provided in the SpW-10X on each port to detect 

blocking (see section 4.5). If a SpaceWire packet becomes blocked for any 

reason the SpW-10X will detect this blockage, append an EEP to the end of 

data already sent, and spill the tail end of the packet. A range of time-out 

values are provided from 0.1ms to over 1s. The watchdog timers can be 

disabled. 

4.10.3 Routing to a Not-Connected Port 

It is possible that a packet does not have a correct address, or a routing 

table is not correctly configured and it ends up being routed to a port that is 

not connected to anything. In this situation, if watchdog timers are enabled, 

the router will wait for the link to start until the end of the time-out period and 

then spill the packet. No EEP is appended since no data from the packet will 

have been transferred. If watchdog timers are not enabled, the packet will 

be spilt immediately. 

4.10.4 Routing to a Non-Existent Port 

Similarly a packet could be routed to a port that does not actually exist on 

the router, e.g. port 12 on an 8 port router. In this case the router 

immediately spills the packet and logs this error in its status registers. 

4.10.5 Routing to a Busy Port 

If a packet is routed to a port that is already busy on a router, the router will 

wait to send the packet for the watchdog timer period. If it times out it will 

spill the packet, but not append an EEP to the end of the packet since no 

data from the packet has been sent. This is different from the case in 

section 4.10.2, as there the packet is in the process of being sent through a 

router output port when it becomes blocked. Here the packet has not yet 

been switched to the output port, as that port is busy. If the time out occurs 

and the waiting packet is spilt, this error is logged in a status register. 



 

92 

4.10.6 Start On Request, Disable On Silence 

The SpW-10X has some facilities to support power saving. It can be set to 

“disable on silence” and to “start on request”. 

Disable on silence will switch off a link when there is no packet to send, after 

the watchdog timer interval.  

Start on request will start a disabled link when a packet that arrives on 

another port wants to be routed across the disabled link. It will attempt to do 

this for the watchdog interval and then give up spilling the waiting packet. 

These features, together with auto-start, allow automatic enabling and 

disabling of a link when only sporadic data transfers are required. This is 

illustrated in Figure 59 to Figure 64. 

NODE 1

NODE 2

NODE 6

NODE 5

ROUTER 1 ROUTER 2

1

2

5

4

1

2

5

4

33

Port 5
AutoStart

Not Running
Disable on Silence

Port 1
AutoStart

Not Running
Disable on Silence

Figure 59 Start On Request, Disable On Silence: Initial State 

Router 1 and Router 2 are set to auto-start, to start on request and to 

disable on silence. No traffic is flowing. 



 

93 

NODE 1

NODE 2

NODE 6

NODE 5

ROUTER 1 ROUTER 2

1

2

5

4

1

2

5

4

33

Node 1
Sends packet 

 

Figure 60 Start On Request, Disable On Silence: Node Starts to Send 

Packet 

Node 1 sends a packet to Router 1 which is destined for node 5 and is to be 

forwarded out of port 5 of Router 1. This port is disabled at present. 

NODE 1

NODE 2

NODE 6

NODE 5

ROUTER 1 ROUTER 2

1

2

5

4

1

2

5

4

33

Port 5 
automatically 

started 

Figure 61 Start On Request, Disable On Silence: Output Port Started 

Port 5 of Router 1 is started automatically and attempts to initialise the link 

to port 1 of Router 2. 



 

94 

NODE 1

NODE 2

NODE 6

NODE 5

ROUTER 1 ROUTER 2

1

2

5

4

1

2

5

4

33

Connection made 
and packet 
transferred

 

Figure 62 Start On Request, Disable On Silence: Connection Made and 

Packet Forwarded 

Port 1 of Router 2 is set to auto-start, so when Router 1 tries to initialise the 

link it succeeds and the packet is forwarded through Router 2 to reach node 

5. 

NODE 1

NODE 2

NODE 6

NODE 5

ROUTER 1 ROUTER 2

1

2

5

4

1

2

5

4

33

After timout
automatically

disabled 

Figure 63 Start On Request, Disable On Silence: Time-out When Silent 

There are no more packets to be sent so the link between Router 1 port 5 

and Router 2 port 1 falls silent. After the time-out period. Router 1 detects 

that there is no more traffic being sent over this link and since it is set to 

disable on silence, it disables output port 5. 



 

95 

NODE 1

NODE 2

NODE 6

NODE 5

ROUTER 1 ROUTER 2

1

2

5

4

1

2

5

4

33

Link
powered down 
saving power

Figure 64 Start On Request, Disable On Silence: Link Disconnected 

Once Router 1 port 5 is disabled, it forces a disconnect to be detected at the 

other end of the link. Router 2 port 1 is then disabled. If tri-stating of links is 

enabled, power can be saved. 

4.10.7 Tristate 

The output ports can be put in a state similar to tri-state to save some power 

when they are not being used. Remember that an LVDS driver is always 

sourcing current. Tri-stating it turns off this current and stops power being 

wasted. Tri-state can be used with the power saving techniques mentioned 

in section 4.10.6. 

4.10.8 Disable Transmit Clocks 

The SpW-10X router has eight SpaceWire ports. In some systems not all of 

these ports are required. It is then possible to turn off the clock tree to a port 

to save power. The front end receive part of the port has its clock derived 

from the receive signal so there will be no dynamic power consumed in the 

receiver if it is not connected. Configuration registers are used to disable the 

transmit clocks to unused ports. 

4.10.9 Priority Packet Delivery 

Some SpaceWire routers have implemented a priority scheme, although this 

is not specified in the SpaceWire standard. 



 

96 

If there are two input ports in a router waiting to use a particular output port, 

an arbitration mechanism is used to select which input port is to be served.  

The arbitration mechanism can include a priority scheme.  There is no 

priority flag available within the header of a SpaceWire packet to specify its 

priority level.  The SpaceWire header only contains address information, so 

packet priority must be associated with a logical address (or with the input 

port number).  In the routing tables logical addresses may be assigned high 

or low priority. High priority logical addresses have preferential access to an 

output port when arbitration takes place.  A logical address that has been 

assigned high priority, acts as a high priority channel across the network 

from many possible sources to the one destination.  If high and low priority 

access to a particular destination is required, two logical addresses are 

required for a particular destination, one assigned high priority and the other 

low priority.  A source can then decide which logical address to use when 

sending a packet to a destination, depending on the required priority of the 

packet. There is a compromise between the number of destinations that can 

be addressed and the number of priority levels.  With two priority levels it is 

possible to have, say 128 low priority destinations and 96 high priority 

destinations within the 224 logical addresses available.  



 

97 

5 Time-Codes 

SpaceWire time-codes [12] provide a means of synchronising units across a 

SpaceWire system with reasonably low jitter. This time information can be 

provided as “ticks”, an incrementing value which may be synchronized to 

spacecraft time. The time-codes are broadcast rapidly over the SpaceWire 

network, alleviating the possible need for a separate time distribution 

network. 

5.1 Time-code Structure 

A SpaceWire time-code comprises the SpaceWire ESC character followed 

by a single 8-bit data character. The data character contains two control-

flags and a six-bit time-count. The time-code is illustrated in Figure 65. The 

six-bit time-count is held in the least-significant six-bits of the Time-Code 

(T0-T5) while the two most-significant bits (T6, T7) contain the two control-

flags. The parity bit (P) in the middle of the time-code is set to one to give 

the correct parity. 

P 1 1 1 1 0 T0 T1 T2 T3 T4 T5 T6 T7

(P)

ESC DATA CHARACTER  

Figure 65 SpaceWire Time-Code 

The two control-flags are for general use, they do not have a specific 

function for time-code distribution. The only permitted value for the flags is 

0b00. The other possible values are reserved. 

5.2 Time-code Interface 

In order to be able to transmit and receive time-codes a SpaceWire CODEC 

has a time-code interface. The time-code interface comprises two signals, 

TICK_IN and TICK_OUT, together with an eight-bit time-code input-port and 



 

98 

an eight-bit time-code output-port. The eight-bit input and output are split 

into two fields: a six-bit time field and two-bit control-flag field.  

The TICK_IN signal is used to request the transmission of a time-code and 

the eight-bit input port provides the time-code value to be sent. Whenever 

TICK_IN is asserted the SpaceWire CODEC will send a time-code 

immediately after the character currently being transmitted has finished. 

Note that a SpaceWire CODEC can only send time-codes when it is up and 

running sending Nulls, FCTs and/or data (i.e. is in the Run state). 

The TICK_OUT is used to indicate that a time-code has arrived at a 

SpaceWire interface. TICK_OUT is asserted whenever the link interface is 

in the Run state and the receiver receives a valid time-code. The eight-bit 

time-code output-port is set to reflect the contents of the time-code. 

5.3 Time-counter 

Each node and router contains a time-counter which is used to hold the 

current 6-bit time value from the time-code time. This counter is also used to 

validate an incoming time-code and to decide whether the time-code should 

be propagated. In a node, time-code propagation is up to the application 

(hardware or software). In a router it is to all the output ports of the router, or 

at least all port that have been configured to forward time-codes. 

During normal operation the time value in a time-code increments from one 

time-code to the next, rolling round from 63 to 0 when it reaches the 

maximum possible time value. When a time-code arrives at a SpaceWire 

node or router its value should be one more than the current value of the 

time-counter at this node or router. The time value of an incoming time-code 

is compared to the value of the time-counter. If the time-code is one more 

than the current value of the time-counter then the time-code is deemed 

valid. The time-counter is then incremented to the value of the time-code 

and the arrival of a valid time-code is indicated. 



 

99 

If the time value of the time-code is not one more than the time-counter then 

the time-code is not valid. In this case the time-counter is set to the value of 

the newly arrived time-code but the arrival of the time-code is not flagged. 

5.4 Time Master 

A single SpaceWire node or router in a system is responsible for generating 

time-codes. This “time-master” has an active TICK_IN signal which is 

asserted periodically (e.g. every millisecond) by its host system.  Only the 

time-master should assert its TICK_IN signal, all other nodes must keep 

their TICK_IN signals de-asserted. To send out a time-code the time-master 

has to increment the time value on the SpaceWire CODEC time input-port 

and then assert the TICK_IN signal. The SpaceWire CODEC will then read 

in the new time-code value and transmit the requested time-code as soon 

as the current character has finished being sent.  

The time-counter in the node or router acting as the time-master, may be 

used to generate the correct sequence of time-codes for transmission. The 

six-bit time-counter output is fed to the time-code input-port. When the next 

time-code is to be transmitted, the time-counter is incremented and the 

TICK_IN signal asserted. This causes the SpaceWire CODEC to send the 

required time-code. The values of the two control-flags sent in the time-code 

are application dependent. Their values should be updated when the time-

counter is incremented. 

Time-codes are normally generated periodically by the time-master to 

provide a regular timing tick for the SpaceWire system. The frequency of 

time-code is called the tick rate and the period between time-codes is called 

the tick interval. 

5.5 Time-codes across a Link 

When one end of a SpaceWire link is periodically sending out valid time-

codes, the SpaceWire interface at the other end of the link receives the 



 

100 

time-codes, checks their validity, updates the time-counter with the new time 

value and asserts the TICK_OUT signal. The host system attached to this 

end of the SpaceWire link, receives periodic TICK-OUT signals together 

with the six-bit time value and the two control-flags. The TICK-OUT signal 

can be used to raise an interrupt or event in a software-driven node. 

If a SpaceWire interface receives a time-code that is not one more than the 

current value of its time-counter then the time-code is not valid and the 

interface does not emit a TICK_OUT signal.   

5.6 Router Action on Receiving a Time-code 

A router contains a single time-counter. When a link interface on a router 

receives a time-code it checks that it is one more than the current value of 

the router’s time-counter. It then increments the router’s time-count and 

emits a TICK_OUT signal.  This TICK_OUT signal propagates to the 

TICK_IN interfaces of all the router output ports so that they all emit the 

time-code. This time-code is the same value as that received by the router, 

since the router time-counter has been incremented. The time-code is not 

emitted by the link that first received the time-code. 

If there is a circular connection then the router will receive a time-code with 

the same time value as the router time-counter.  When this happens the 

time-code is ignored.  In this way time flows forward through a network 

reaching all nodes but is suppressed if it flows back due to a circular 

connection. 

5.7 Time-code Distribution across a Network 

In this section the distribution of time-codes across a SpaceWire network is 

described. 

The initial state of a network is shown in Figure 66. N1 and N2 are nodes. 

R1 and R2 are routers. The dotted lines represent the SpaceWire links 

between the nodes and routers. N1 is time-master and sends out a time-



 

101 

code whenever its TICK_IN signal is asserted. The numbers in the node and 

router boxes represent the current values of their time-counters. 

N1

40

R2

40

R1

40

R3

40

N2

40

 

Figure 66 Initial State of Network 

When TICK_IN is asserted in node N1, its time-counter is incremented from 

40 to 41 and a time-code with time value 41 is transmitted. This is shown in 

Figure 67. 

N1

41

R2

40

R1

40

R3

40

N2

40

TICK_IN

 

Figure 67 TICK_IN Asserted 

The transmitted time-code is received by router R1 which checks that the 

time value is one more than the current time counter value, and then 

increments its time-counter and sends out time-code on all its other links. 

See Figure 68. 

N1

41

R2

40

R1

41

R3

40

N2

40

 

Figure 68 Router R1 Forwards Time-codes 



 

102 

Routers R2 and R3 both receive time-codes sent from R1 and both of these 

routers send out a time-code on all other links as shown in Figure 69. 

N1

41

R2

41
R1

41

R3

41

N2

40

Figure 69 Routers R2 and R3 Forward Time-codes 

Node N2 receives the time-code from R3 and validates that the incoming 

time-code has a time value of one more than the node’s time-counter. It 

then increments the time-counter and asserts TICK-OUT.  See Figure 70. 

Time in N2 is updated.  

N1
41

R2
41

R1
41

R3
41

N2
41

TICK_OUT

Figure 70 N2 Receives Time-code and Asserts TICK_OUT 

R3 will also receive a time-code from R2, which is now not one more than 

R3’s time-counter value, so is ignored as shown in Figure 71. This prevents 

time-codes from going back through the network. Time-codes move forward 

through the network even when there are loops in the network. 

N1

41

R2

41
R1

41

R3

41

N2

41

Figure 71 Time-codes Cannot Go Backwards 

Node N2 will also receive a time-code from R2 which is not one more than 

N2’s time-counter value, so is ignored. This prevents multiple triggering of 

the TICK_OUT signal as duplicate copies of the time-code which have taken 



 

103 

different paths through the SpaceWire network arrive at the node. See 

Figure 72. 

N1

41

R2

41
R1

41

R3

41

N2

41
 

Figure 72 Other Time-codes Received at N2 are Not Valid 

5.8 Lost Time-Codes 

If a received time-code is not one more than (modulo 64) the current time-

count at the receiving link-interface, then either the time-code or the time-

count shall be considered invalid.  This can happen if a time-code is lost, or 

if a link is reset or restarted after a disconnect.   

If the time-code is invalid then the time-count is updated to the new value 

but the time-code is not propagated in a router and TICK_OUT is not 

asserted in a node. This prevents propagation of invalid time-codes across a 

network.  When the next time-code is received it is expected that the time-

counter matches the time-code and normal operation resumes. Recovery 

from missing or invalid time-codes will now be considered. 

Figure 73 shows a SpaceWire network in which a time-code with a time-

value of 20 is lost between R1 and R2.  

N1
20

R1
20

R2
19

N2
19

Figure 73 Lost Time-Code 

On the next tick N1 sends out the time-code 21. R1 then forwards this time-

code to R2. This is not same as, nor one more than time-counter of R2 so 



 

104 

R2 updates its time-counter but does not emit the time-code, as shown in 

Figure 74. 

N1
21

R1
21

R2
21

N2
19

Figure 74 R2 Time-counter Updated 

On the next tick the time-code 22 is sent from N1 to R1, which forwards it on 

to R2. At R2 the time-count is now 21, so the incoming time-code is one 

more than the time-count hence the time-code is now valid and is 

propagated by the router and reaches N2. See Figure 75. When the time-

code reaches N2 it is not one more than N2’s time-count (value 19) so the 

time-code is deemed invalid. N2 updates its time count to 22 but does not 

give a TICK_OUT. 

N1
22

R1
22

R2
22

N2
22

Figure 75 N2 Time-counter Updated 

The next tick will result in the time-code 23 propagating across the network 

and N2 will produce a TICK_OUT, as shown in Figure 76. 

N1
23

R1
23

R2
23

N2
23

TICK_OUT

Figure 76 N2 gets Valid Time-code 

It takes several ticks to recover from initial error, depending upon the size of 

the network. 

Note that if there is an alternative path from R1 to R2 the time-code may 

propagate successfully through the alternative path so that R2 gets a valid 



 

105 

time-code even though one of the time-codes on its way to R2 gets lost. 

This provides a first level of fault tolerance for time-code distribution.  

Nodes using the time-code distribution function can either use the 

TICK_OUT signal as a periodic timing signal or use the value of the time-

count as an indication of the least-significant 6-bits of system time.   

As a missing tick results in a timing discrepancy, the TICK_OUT signal 

should not be used to increment a counter with the expectation that this 

counter always corresponds to the system time. Rather a time-lock 

technique should be used where a free running local time-counter is 

updated to be an exact multiple of the system tick rate every time the 

TICK_OUT signal is asserted. The reason for this is that when using the 

TICK_OUT signal as a periodic timing signal the time-code can be missed 

so that a TICK_OUT signal is missed.  Having said this, SpaceWire signals 

running over 10m SpaceWire cable have a good eye diagram and are 

unlikely to give rise to any errors. 

5.9 Time-code Latency 

The accuracy with which system time can be distributed is dependent upon 

the number of links over which it is distributed and the operating rate of each 

of those links. A delay of at least 14 bit-periods (ESC + data character = 4 + 

10 bits) is encountered for each link that the time-code traverses, due to the 

time taken for each link-interface on the way to receive a Time-Code. This 

gives rise to a time-skew across a network of Tskew = 14.S/A where S is the 

number of SpaceWire links traversed and A is the average link operating-

rate. Jitter is also introduced at each link interface due to the variation in 

time spent waiting for the transmitter to finish transmitting the current 

character or control code. At each link interface a delay of 0 to 10 bit-periods 

can be encountered. Across a network, this gives rise to a total jitter of T jitter 

= 10.S/A. For an average rate of 100 Mbit/s and 10 links traversed, the time 

skew is 1.4 s and the jitter 1.0 s. The skew and jitter may be higher than 

indicated above depending on the implementation of the link-interface. A 



 

106 

time accuracy across a network of significantly better than 10 s may be 

difficult to achieve, using the standard time-code mechanism. 

5.10 Time-code Applications 

5.10.1 Synchronisation 

Time-codes sent periodically may be used to synchronise the operation of a 

SpaceWire network, separating time into discrete time-slots during which 

scheduled transactions take place.  

5.10.2 Time Distribution 

With the provision of this basic time distribution function, application level 

protocols can be used to distribute specific time values at full resolution (not 

just 6-bits) and to issue time dependent commands etc.  The two control 

flags that are distributed with the 6-bit time code can be used to broadcast 

information to all nodes and routers on the network. However, these two 

control flags are reserved in the SpaceWire standard, so they should be 

both set to zero, to be compliant with the standard. 

Nodes using the system time distribution function can either use the 

TICK_OUT signal as a periodic timing signal or use the value of the time-

count as an indication of the least-significant 6-bits of system time.   

5.10.3 Event Signalling Across A Point-To-Point Link 

Time-codes can also be used to signal events or to pass a high-priority byte 

of information across a point-to-point link. The time-code is sent 

transparently in the middle of the packet currently being transmitted. There 

is no need to terminate the current packet or to wait for its transmission to 

complete before sending the time-code. This technique should not be used 

when there are routers in the SpaceWire network. 



 

107 

5.10.4 Multiple Time-codes 

NASA Goddard Space Flight Centre used four independent time-code 

counters in their routers and interfaces to provide four independent sets of 

time-codes indicted by the four possible values of the two flags in the time-

code character. The value of these two flags determined which of the four 

time-code counters was used to validate the time-code before it was 

forwarded. 

This approach allowed four different time signals to be provided over the 

SpaceWire network. 

5.10.5 Interrupt scheme 

Professor Yuriy Sheynin of St Petersburg University of Aerospace 

Instrumentation (SUAI) devised a scheme for sending interrupts over 

SpaceWire using a time-code like mechanism. Using one of the reserved 

values of the time-codes it permitted 32 interrupt signals to be transferred 

over the SpaceWire network. This mechanism operates in parallel with the 

time-code mechanism. 

 



 

108 

6 SpaceWire Protocols 

 

 

“SPACEWIRE PROTOCOLS” and other chapters will be 

added to the SpaceWire User’s Guide. 

Please check www.star-dundee.com for latest updates. 

 

 

Here is a brief indication of what the SpaceWire Protocols chapter will 

contain. 

6.1 Protocol Identifier 

The protocol identification scheme enables many different protocols to 

operate concurrently over a SpaceWire network without them interfering 

with each other. Each protocol is given a unique identifier. Units receiving 

packets process and respond to them according to the protocol specified by 

the protocol identifier in the packet. If a packet arrives with a particular 

protocol identifier that is not supported by a node, then it is ignored.  

The protocol identification scheme is specified in ECSS standard ECSS-E-

ST-50-51C. 

6.2 Remote Memory Access Protocol 

The flexibility of SpaceWire means that it can be used in many different 

ways to solve an on-board communication need, e.g. configuring and 

controlling an instrument. To avoid unnecessary duplication of effort the 

SpaceWire Working Group [13] examined these common applications of 

SpaceWire and specified some additional protocols, enabling further 

standardisation of the on-board data-handing system. The SpaceWire 

http://www.star-dundee.com/


 

109 

Remote Memory Access Protocol (RMAP) [14] [15], is a particularly 

successful example of one of these protocols that operate over SpaceWire. 

RMAP provides a common mechanism for reading and writing to registers 

and memory in a remote device over a SpaceWire network. It can be used 

to configure devices, read housekeeping information, read data from an 

instrument or mass-memory, and write data into a mass-memory from an 

instrument. Together RMAP and SpaceWire provide a powerful combination 

for spacecraft instrument data-handling. A central payload processing 

computer is able to configure the instruments using RMAP. When data is 

available it can be read from the instrument using an RMAP read command. 

A uniform memory space can be provided for each instrument with pages 

for instrument data, configuration registers and housekeeping status 

registers, simplifying and standardising instrument control operations. 

6.3 CCSDS Packet Transfer Protocol 

The Consultative Committee for Space Data Systems (CCSDS) Packet 

Transfer Protocol (PTP) is designed to transfer CCSDS Space Packets from 

one SpaceWire device to another. It encapsulates a CCSDS Space Packet 

into a SpaceWire packet, transfers it from the unit initiating the data transfer 

to a target device across a SpaceWire network. At the target device the 

CCSDS Space Packet is extracted from the SpaceWire packet and passed 

to a target user application. This protocol does not provide any means for 

ensuring delivery of the packet nor is it responsible for the contents of the 

packet being a CCSDS Space Packet. 

 



 

110 

REFERENCES 

1. S.M. Parkes, “SpaceWire: The Standard”, Proceedings, DASIA 99, 

Data Systems In Aerospace, 17-21 May 1999, Lisbon, Portugal, pp 

111-116, European Space Agency (ESA) publication no. SP-447, ISBN 

92-9092-788-7. 

2. European Cooperation for Space Standardization, Standard ECSS-E-

ST-50-12C, SpaceWire, Links, Nodes, Routers and Networks, Issue 1, 

European Cooperation for Space Data Standardization, February 2003 

(formerly ECSS-E-50-12A February 2003). 

3. ESA SpaceWire Website, http://spacewire.esa.int, viewed on 1
st
 

December 2010. 

4. S.M. Parkes and A. Gillions, “DSP Technology Study Final Report”, 

British Aerospace Space Systems Ltd, TP 9459, ESTEC Contract 

Number 8741/90/NL/JG(SC), September 1992. 

5. Inmos Transputer 

6. T9000 Transputer User Manual 

7. IEEE Computer Society, “IEEE Standard for Heterogeneous 

Interconnect (HIC) (Low-Cost, Low-Latency Scalable Serial 

Interconnect for Parallel System Construction)”, IEEE Standard 1355-

1995, IEEE, June 1996. 

8. S.M. Parkes et al, “Review of Standard and Status”, Digital Interface 

Circuit Evaluation Study WP1000 Technical Report, Document No. 

UoD-DICE-TN-1000, ESA Contract No. 12693/97/NL/FM, University of 

Dundee, July 1998. 

9. Telecommunications Industry Association, “Electrical Characteristics of 

Low Voltage Differential Signaling (LVDS) Interface Circuits”, 

ANSI/TIA/EIA-644-1995, March 1996. 

http://spacewire.esa.int/content/Standard/ECSS-E50-12A.php
http://spacewire.esa.int/


 

111 

10. S.M. Parkes, “High-Speed, Low-Power, Excellent EMC: LVDS for On-

Board Data-handling”, DSP’98, 6th International Workshop on Digital 

Signal Processing Techniques for Space Applications, ESTEC, 

Noordwijk, The Netherlands, 23-25 September 1998, European Space 

Agency (ESA) publication no. WPP-144, paper P16. 

11. S.M. Parkes, C. McClements, G. Kempf, S. Fischer and A. Leon, 

"SpaceWire Router", in: ISWS International SpaceWire Seminar 2003 

(Noordwijk, The Netherlands, 4-5 November (CD Rom) 2003) pp.180-

187. 

12. S.M. Parkes, "The operation and uses of the SpaceWire time-code", in: 

ISWS International SpaceWire Seminar 2003 (Noordwijk, The 

Netherlands, 4-5 November (CD Rom) 2003) pp.223-230.  

13. SpaceWire working group website, 

http://spacewire.esa.int/WG/SpaceWire/, viewed on 1
st
 December 2010. 

14. “SpaceWire – Remote memory access protocol”, European 

Cooperation for Space Standardization, ECSS-E-ST-50-51C, Issue 1, 

January 2010. 

15. S. Mills, S.M. Parkes and N. O’Gribin, “SpaceWire Data-handling with 

RMAP”, Data Systems in Aerospace (DASIA), 2007, ISBN 92-9092-

202-8. 

16. GAIA, http://spacewire.esa.int/science/gaia, viewed on 1
st
 December 

2010. 

17. ExoMars, http://exploration.esa.int/science-

e/www/object/index.cfm?fobjectid=46048, viewed on 1
st
 December 

2010. 

18. BepiColombo Mercury Polar Orbiter, 

http://www.esa.int/esaSC/120391_index_0_m.html, viewed on 1
st
 

December 2010. 

http://spacewire.esa.int/WG/SpaceWire/
http://spacewire.esa.int/science/gaia
http://exploration.esa.int/science-e/www/object/index.cfm?fobjectid=46048
http://exploration.esa.int/science-e/www/object/index.cfm?fobjectid=46048
http://www.esa.int/esaSC/120391_index_0_m.html


 

112 

19. Sentinel 1, http://www.esa.int/esaLP/SEMBRS4KXMF_LPgmes_0.html, 

viewed on 1
st
 December 2010. 

20. Sentinel 2, http://www.esa.int/esaLP/SEMM4T4KXMF_LPgmes_0.html, 

viewed on 1
st
 December 2010. 

21. Sentinel 3, http://www.esa.int/esaLP/SEMTST4KXMF_LPgmes_0.html, 

viewed on 1
st
 December 2010. 

22. Sentinel 5, http://www.esa.int/esaLP/SEM3ZT4KXMF_LPgmes_0.html, 

viewed on 1
st
 December 2010. 

23. SWIFT, http://www.nasa.gov/mission_pages/swift/main/index.html, 

viewed on 1
st
 December 2010.  

24. NASA, “Lunar Reconnaissance Orbiter website”, 

http://www.nasa.gov/mission_pages/LRO/main/index.html, viewed on 

1
st
 December 2010. 

25. LCROSS, http://lcross.arc.nasa.gov/ 

26. JWST, “James Webb Space Telescope website”, 

http://www.jwst.nasa.gov/ 

27. MMS, “Magnetospheric Multi-Scale mission website”, 

http://mms.space.swri.edu/spacecraft.html 

28. GOES-R, “Geostationary Operational Environmental Satellite – R 

Series website”, http://www.goes-r.gov/ 

29. D. Fronterhouse and J. Lyke, “Plug-and-Play Satellite(PnPSat) 

Demonstrating the Vision”, Proceedings of 1
st
 International SpaceWire 

Conference, Dundee, Scotland, Sept 2007. 

30. P. Jaff, G. Clifford and J. Summers, “SpaceWire for Operationally 

Responsive Space as part of Tacsat-4”, Proceedings of 1
st
 International 

SpaceWire Conference, Dundee, Scotland, Sept 2007. 

http://www.esa.int/esaLP/SEMBRS4KXMF_LPgmes_0.html
http://www.esa.int/esaLP/SEMM4T4KXMF_LPgmes_0.html
http://www.esa.int/esaLP/SEMTST4KXMF_LPgmes_0.html
http://www.esa.int/esaLP/SEM3ZT4KXMF_LPgmes_0.html
http://www.nasa.gov/mission_pages/swift/main/index.html
http://www.nasa.gov/mission_pages/LRO/main/index.html


 

113 

31. BepiColombo Mercury Magnetospheric Orbiter, 

http://www.stp.isas.jaxa.jp/mercury/p_mmo.html  

32. Astro-H, http://astro-h.isas.jaxa.jp/  

33. SPRINT-A, http://www.jaxa.jp/article/interview/vol56/p2_e.html  

34. ASNARO, 

http://www.usef.or.jp/english/f3_project/asnaro/f3_asnaro.html  

35. NEC, NEXTAR, 

36. RosCosmos and SpaceWire 

37. M. CHilderhouse, “NGP-N ASIC”, Microelectronics Presentation Days 

2010, ESTEC, 30
th
 March 2010, 

http://microelectronics.esa.int/mpd2010/day1/NGP-

N_for_MPD2010.pdf, viewed on 1
st
 December 2010.  

38. B. Dean, R. Warren, and B. Boyes, “RMAP over SpaceWire on the 

ExoMars Rover for Direct Memory Access by Instruments to Mass 

Memory”, 2
nd

 International SpaceWire Conference, Nara, Japan, Nov 

2008. 

39. J.R. Marshall, “Evolution and Applications of System on a Chip 

SpaceWire Components for Spacebourne Missions”, 2
nd

 International 

SpaceWire Conference, Nara, Japan, Nov 2008. 

40. S.M. Parkes, C. McClements, G. Kempf, S. Fischer, P. Fabry and A. 

Leon, “SpaceWire Router ASIC”, Proceedings of 1
st
 International 

SpaceWire Conference, Dundee, Scotland, Sept 2007. 

41. J. Ilstad, W. Gasti, P. Sinander, and S. Habinc, “SpaceWire Remote 

Terminal Controller”, Proceedings of International SpaceWire 

Conference, Dundee, Sept 2007. 

42. IEEE Computer Society, “IEEE Standard for a High Performance Serial 

Bus”, IEEE Standard 1394-1995, IEEE, August 1996 

http://www.stp.isas.jaxa.jp/mercury/p_mmo.html
http://astro-h.isas.jaxa.jp/
http://www.jaxa.jp/article/interview/vol56/p2_e.html
http://www.usef.or.jp/english/f3_project/asnaro/f3_asnaro.html
http://microelectronics.esa.int/mpd2010/day1/NGP-N_for_MPD2010.pdf
http://microelectronics.esa.int/mpd2010/day1/NGP-N_for_MPD2010.pdf


 

114 

 

 



 

115 

 

 

 

 

 

About the Author: 

 

Steve Parkes is the founder and Chief Executive of STAR-Dundee Limited 

and Chair in Spacecraft Electronic Systems at the University of Dundee, 

leading the Space Technology Centre. 

 

 

 

 

 

 

 

 

 

www.star-dundee.com 

 

 

 

 



 

116 

 

 

 

 

 

 

 



 

 


	Glossary
	1 Introduction
	2 The SpaceWire Data-Handling Network
	2.1 The Rationale for and Brief History of SpaceWire
	2.2 An Example SpaceWire Application
	2.3 How SpaceWire Works
	2.3.1 SpaceWire Links
	2.3.2 SpaceWire Packets
	2.3.2.1 SpaceWire Networks
	2.3.2.2 SpaceWire Routing Switches
	2.3.2.3 Packet Addressing


	2.4 SpaceWire Architectures
	2.4.1 Point to Point Links
	2.4.2 Fault Tolerant Links
	2.4.3 Router Based Architecture
	2.4.4 Instrument Data Concentrator
	2.4.5 Bridge to Low Data Rate Sensor Bus

	2.5 Example SpaceWire Mission Architectures
	2.5.1 Missions Using SpaceWire
	2.5.2 ESA ExoMars
	2.5.3 NASA Lunar Reconnaissance Orbiter
	2.5.4 BepiColombo
	2.5.5 ASNARO


	3 SpaceWire Links
	3.1 Physical Level
	3.1.1 Cables
	3.1.2 Connectors
	3.1.3 Cable Assemblies
	3.1.4 Printed Circuit Board Tracks

	3.2 Signal Level
	3.2.1 Signal Level and Noise Margins
	3.2.2 Data encoding

	3.3 Character Level
	3.3.1 SpaceWire Characters
	3.3.2 Parity Coverage
	3.3.3 Character Priority
	3.3.4 Character Functions
	3.3.5 Character Synchronisation

	3.4 Exchange Level
	3.4.1 SpaceWire Link Interface
	3.4.2 Link Initialisation
	3.4.3 Link Flow Control
	3.4.4 Link Error Handling
	3.4.5 Auto-Start

	3.5 Packet Level
	3.6 Link error Recovery

	4 SpaceWire Networks
	4.1 SpaceWire Nodes
	4.2 SpaceWire Routing Switch
	4.3 Routing Tables
	4.4 Group Adaptive Routing
	4.5 Wormhole Routing
	4.6 Header Deletion
	4.7 Time-code Broadcast
	4.8 Router Configuration
	4.9 Packet Distribution
	4.10 Example SpaceWire Router
	4.10.1 SpW-10X Architecture
	4.10.2 Watchdog Timers
	4.10.3 Routing to a Not-Connected Port
	4.10.4 Routing to a Non-Existent Port
	4.10.5 Routing to a Busy Port
	4.10.6 Start On Request, Disable On Silence
	4.10.7 Tristate
	4.10.8 Disable Transmit Clocks
	4.10.9 Priority Packet Delivery


	5 Time-Codes
	5.1 Time-code Structure
	5.2 Time-code Interface
	5.3 Time-counter
	5.4 Time Master
	5.5 Time-codes across a Link
	5.6 Router Action on Receiving a Time-code
	5.7 Time-code Distribution across a Network
	5.8 Lost Time-Codes
	5.9 Time-code Latency
	5.10 Time-code Applications
	5.10.1 Synchronisation
	5.10.2 Time Distribution
	5.10.3 Event Signalling Across A Point-To-Point Link
	5.10.4 Multiple Time-codes
	5.10.5 Interrupt scheme


	6 SpaceWire Protocols
	6.1 Protocol Identifier
	6.2 Remote Memory Access Protocol
	6.3 CCSDS Packet Transfer Protocol

	references



