STARjDundée

SpaceW|re Engmeerlng Excellence

SpaceWire EGSE: Simulating an Instrument

The SpaceWire Electronic Ground Support Equipment (EGSE) is a test and development unit that
simulates instruments or other SpaceWire equipment in real-time. The EGSE is configured using a simple
yet powerful scripting language designed specifically for SpaceWire applications. Once configured the
EGSE operates independent of software resulting in real-time performance. This can be used to rapidly
mimic the behaviour of SpaceWire equipment, vastly reducing traditional development time, risk and cost
associated with writing equivalent software in a real-time operating system.

This application note provides an example of how an instrument may be simulated using a SpaceWire
EGSE. Comparing this to traditional EGSE which requires complex and expensive real-time software
development, the time saving, risk reduction and cost benefits provided by the SpaceWire EGSE should
become clear.

Scenario

A company needs to simulate a SpaceWire instrument in order to develop and test the SpaceWire
components that will communicate with it: a control processor and mass memory module. The control
processor is responsible for setting the instrument’s mode. The mass memory module receives the
SpaceWire traffic transmitted from the instrument.

The instrument operates at a link speed of 200Mbits/s and has three modes. In “Mode 0” the instrument
is off. In “Mode 1” the instrument transmits 64kByte packets with random data at 150Mbits/s. In “Mode
2”, 1kByte packets with walking ones data are transmitted at 50Mbits/s. The mode is determined by the
two least significant bits of the instrument’s control register at address 1 (Mode 0 = 0b00, Mode 1 = 0b01
and Mode 2 = 0b10). RMAP write commands transmitted from the control processor change the value of
the control register and therefore govern the instrument’s mode.

Test Setup

The SpaceWire EGSE is connected to the host PC via USB and powered by a 5V power brick. A SpaceWire
cable connects interface one of the EGSE to the control processor. Interface two of the SpaceWire EGSE is
connected to the mass memory module. The diagram below illustrates this configuration.

Control Processor SpaceWire EGSE Mass Memory
(simulating instrument)

o]
O

STAR-Dundee SpaceWire EGS!

SpaceWire Cable SpaceWire Cable

Instrument Simulation Test Setup

Application Note

SpaceWire EGSE: Simulating an Instrument

Scripting the Instrument Simulation

In order to configure the SpaceWire EGSE to simulate the instrument, a script must first be written that
defines the instrument’s behavior. In this example the link speed is first stipulated:

config
spw_tx rate(2,
end config

200Mbps)

The above statement sets the line rate of SpaceWire link

Pattern matchers are then defined that match on

two to 200Mbits/s.

the RMAP write commands that control the

instrument’s mode (note that comments are prefixed with the ‘#' character):

match matchModeORMAPRegWrite

sop
Oxfe # Target logical address
0x01 # Protocol ID
0x60 # Instruction
0x20 # Key

No reply address
Oxfe # Initiator logical address
Ox—-- # Transaction ID (MS)
Ox-- # Transaction ID (LS)
0x00 # Extended address
0x00 # Address byte 3 (MS)
0x00 # Address byte 2
0x00 # Address byte 1
0x01 # Address byte 0 (LS
0x00 # Data length byte 2 (MS
0x00 # Data length byte 1
0x04 # Data length byte 0 (LS)
Ox—-- # Header CRC
Ox—- # Data byte 3 (MS)
Ox—-- # Data byte 2
Ox-- # Data byte 1
Ob-=-=--- 00 # Data byte 0 (LS)
Ox-- # Data CRC
eop

end match

match matchModelRMAPRegWrite

sop
Oxfe # Target logical address
0x01 # Protocol ID
0x60 # Instruction
0x20 # Key

No reply address
Oxfe # Initiator logical address
Ox-- # Transaction ID (MS)
Ox-- # Transaction ID (LS)
0x00 # Extended address
0x00 # Address byte 3 (MS)
0x00 # Address byte 2
0x00 # Address byte 1
0x01 # Address byte 0 (LS)
0x00 # Data length byte 2 (MS)
0x00 # Data length byte 1
0x04 # Data length byte 0 (LS)
Ox-- # Header CRC
0x—- # Data byte 3 (MS)
Ox-- # Data byte 2
0x—- # Data byte 1
Ob--—--- 01 # Data byte 0 (LS)
Ox-- # Data CRC

(0x01 for RMAP)

(command, write single address, no reply)

(Ignore)
(Ignore)
(0)

(1)

(4 bytes)
(Ignore)
(Ignore)
(Ignore)
(Ignore)
(Mode 0
(Ignore)

0b00)

(0x01 for RMAP)

(command, write single address, no reply)

(Ignore)
(Ignore)

(0)

(1)

(4 bytes)
(Ignore)
(Ignore)
(Ignore)
(Ignore)
(Mode 1
(Ignore)

0b01)

SD_TN_007

STAR-Dundee

SpaceWire EGSE: Simulating an Instrument

eop
end match
match matchMode2RMAPRegWrite
sop
Oxfe # Target logical address
0x01 # Protocol ID (0x01 for RMAP)
0x60 # Instruction (command, write single address, no reply)
0x20 # Key
No reply address
Oxfe # Initiator logical address
Ox-- # Transaction ID (MS) (Ignore)
Ox-—- # Transaction ID (LS) (Ignore)
0x00 # Extended address (0)
0x00 # Address byte 3 (MS)
0x00 # Address byte 2
0x00 # Address byte 1
0x01 # Address byte 0 (LS) (1)
0x00 # Data length byte 2 (MS)
0x00 # Data length byte 1
0x04 # Data length byte 0 (LS) (4 bytes)
Ox—- # Header CRC (Ignore)
0x—- # Data byte 3 (MS) (Ignore)
Ox—- # Data byte 2 (Ignore)
0x—-- # Data byte 1 (Ignore)
Ob-————- 10 # Data byte 0 (LS) (Mode 2 = 0bl0)
0x—- # Data CRC (Ignore)
eop
end match

Three pattern matchers are defined above, each of which will match on an RMAP write command to the
control register (address 1). The first pattern matcher is called “matchModeORMAPRegWrite” and
matches when the two least significant bits of the RMAP write data field equal 0b00. The second pattern
matcher is called “matchModel1RMAPRegWrite” and matches when the two least significant bits of the
RMAP write data field equal 0b01. The final pattern matcher is called “matchMode2RMAPRegWfrite” and
matches when the two least significant bits of the RMAP write data field equal 0b10.

The pattern matchers are then associated with events:

events
modeORMAPPkt = match rx (1, matchModeORMAPRegWrite)
modelRMAPPkt = match rx(1l, matchModelRMAPRegWrite)
mode2RMAPPkt match rx (1, matchMode2RMAPRegWrite)
end events

Three received pattern matched events are defined. The first is named “modeORMAPPkt” and is raised
when the traffic received on interface one matches that specified in the pattern matcher
“matchModeORMAPRegWrite”. The second is named “modelRMAPPkt” and is raised when the traffic
received on interface one matches that specified in the pattern matcher “matchMode1RMAPRegWrite”.
The final received pattern matched event is named “mode2RMAPPkt” and is raised when the traffic
received on interface one matches that specified in the pattern matcher “matchMode2RMAPRegWrite”.

Variables used to transmit packets with dynamic data (random and walking ones in this case) are then
defined:

variables
random = rnd08 ()
rotatelLeft = rol08 (1)
end variables

' STAR-Dundee SD_TN_007

n SpaceWire EGSE: Simulating an Instrument

A one byte random variable is declared named “random” along with a one byte bitwise rotate left variable
named “rotatelLeft” with an initial value of one.

The packets transmitted in each mode are then defined:

packet modelPkt
random * 32768
random * 32768
eop

end packet

packet mode2Pkt
rotateLeft * 1024
eop

end packet

A packet named “modelPkt” is defined that consists of 65536 references of the “random” variable
followed by an EOP marker. A packet named “mode2Pkt” is defined that consists of 1024 references of
the “rotateLeft” variable followed by an EOP marker. Note that the “random” variable references are split
over two lines because the maximum number of times a variable can be referenced on a single line is
65535.

A packet transmission schedule for each mode is then declared:

schedule modeOSchedule
end schedule

schedule modelSchedule @ 150Mbps
send modelPkt
end schedule

schedule mode2Schedule @ 50Mbps
send mode2Pkt
end schedule

The first schedule is named “mode0Schedule” and transmits nothing. The second schedule is named
“modelSchedule” and specifies that the packet named “model1Pkt” should be transmitted as soon as the
schedule is executed at a data rate of 150Mbits/s. The third schedule is named “mode2Schedule” and
specifies that the packet named “mode2Pkt” should be transmitted as soon as the schedule is executed at
a data rate of 50Mbits/s.

Finally a state machine is defined:

statemachine 2
initial state modeO
do modeOSchedule
LED colour is white
on modelRMAPPkt goto model immediately
on mode2RMAPPkt goto mode2 immediately
end state
state model
do modelSchedule repeatedly
LED colour is green
on modeORMAPPkt goto mode(0 immediately
on mode2RMAPPkt goto mode2 immediately
end state
state mode2

SD_TN_007 STAR-Dundee

SpaceWire EGSE: Simulating an Instrument

do mode2Schedule repeatedly
LED colour is blue
on modeORMAPPkt goto mode(O immediately
on modelRMAPPkt goto model immediately
end state
end statemachine

A state machine is defined that is associated with SpaceWire interface two. It contains three states named
“mode0”, “model” and “mode2”. The starting state named “mode0” executes the schedule
“mode0Schedule” and transitions to “model” immediately if the “mode1RMAPPkt” event is detected and
“mode2” immediately if the “mode2RMAPPkt” event is detected. The state named “model” executes the
schedule “modelSchedule” repeatedly and transitions to the “mode0” state immediately if the
“modeORMAPPkt” event is detected and the “mode2” state immediately if the “mode2RMAPPkt” event is
detected. The state named “mode2” executes the schedule “mode2Schedule” repeatedly and transitions
to the “mode0” state immediately if the “modeORMAPPkt” event is detected and the “model” state
immediately if the “mode1RMAPPkt” event is detected.

mode1RMAPPkt

mode2RMAPPkt

SpaceWire EGSE Instrument Simulation State Diagram

When the SpaceWire EGSE is configured using this script, it can operate in three states that correspond to
the three modes described in the scenario above. In the initial “mode0” state it does not transmit any
data. In the “model” state it transmits 64kByte packets with random data at a data rate of 150Mbits/s
from SpaceWire interface two. In the “mode2” state it transmits 1kByte packets with walking ones data at
a data rate of 50Mbits/s from SpaceWire interface two.

State transitions occur in response to RMAP write command packets received on SpaceWire interface
one. Whilst in the “mode0” or “mode2” state, if an RMAP write command is received that writes 0b01 to
the two least significant bits of the control register (address 1), a transition to the “model” state will
occur. Whilst in the “mode0” or “model” state, if an RMAP write command is received that writes 0b10
to the two least significant bits of the control register, a transition to the “mode2” state will occur. Finally,
whilst in the “model” or “mode2” state, if an RMAP write command is received that writes Ob0O0 to the
two least significant bits of the control register, a transition to the “mode0” state will occur.

The optional “LED colour is white”, “LED colour is green” and “LED colour is blue” statements in the state
machine provide a simple indicator of the current executing state. Whilst in the “mode0” state, the
central LED above SpaceWire interface two is white, in the “model” state it is green and in the “mode2”
state it is blue.

' STAR-Dundee SD_TN_007

m SpaceWire EGSE: Simulating an Instrument

Compiling the Script

A script must be compiled before the SpaceWire EGSE can be configured. The SpaceWire EGSE comes
with both a command line application and a GUI application that can be used to do this. In this example
the GUI application will be used. Once the SpaceWire EGSE is connected and powered on, the “egse_gui”
application is launched. A “Device Connection” window is presented where a connection to the
SpaceWire EGSE is opened.

. Device Connection m
MNum Type Status
1] SpaceWire EGSE Connected
l Connect ”Dscornect“ Identify][Close]

Device Connection Window

When the “Device Connection” window is closed the main window is displayed.

Bl SpaceWire EGSE L= | |

File Edit View Build Device Help

D Ed @ %@ 9 E D

Ready Lnl Coll

Main Window

To create the new instrument script, the “New” toolbar button is selected. Alternatively if the script was
already created using a different text editor it can be opened using the “Open” toolbar button.

@Hﬁ ¥ BB R 9 o &)
O NEWOPEN

New and Open Toolbar Buttons

Once the instrument simulation has been scripted, it is compiled using the “Compile” toolbar button. If
the script has been newly created, a save window will prompt the user to save it. When the compile
completes, an output window is displayed that shows any compiler errors or warnings along with the final
compile status i.e. compile succeeded or failed.

SD_TN_007 | STAR-Dundee

SpaceWire EGSE: Simulating an Instrument

[l Spacewire EGSE = | B i
File Edit View Build Device Help

05 Ed @ % 2@ 9 ¢ &)
. instrument.egse [£)

config
spw_bx_rate(1, 200Mbps)
end config

m

match matchModeORMAPRegWrite

sop

0xfe # Target logical address

0x01 # Protocol ID (0x01 for RMAP)

0x60 # Instruction (command, write single address, no reply)

020 # Key

No reply address

Oxfe # Initiator logical address

0x-- # Transaction ID (MS) (Ignore)

0x-- # Transaction ID (LS) (Ignore)

0x00 # Extended address

000 # Address byte 3 (MS) (Ignore)

000 # Address byte 2

000 # Address byte 1

0x01 # Addressbyte 0 (LS) (1)

0x00 # Data length byte 2 (MS)

mxni # Nata lenath hvte 1 A
Output T X
Complie

C:/STAR-Dundee/Repository/spw_egse_swj/trunk/doc/app_notes/instrument_01/script/instrument.egse
WARNING: (121): Mo state transition type associated with state "off". Transition at end of schedule will be used by default.
WARNING: (128): Mo state transition type associated with state "model”. Transition at end of schedule will be used by default.
WARNING: (135): No state transition type associated with state "mode2". Transition at end of schedule will be used by default.
WARNING: SpW link 2 tx rate set to 200Mbps by default.
Output:

C:/STAR-Dundee/Repository/spw_egse_swj/trunk/doc/app_notes/instrument_01/script/instrument.out
C:/STAR-Dundee/Repository/spw_egse_sw/trunk/doc/app_notes/instrument_01/script/instrument.h

m

Compile SUCCEDED

Compile succeeded Ln6l Col 5

Compiler Output

Configure the SpaceWire EGSE

Once a script has been compiled successfully the SpaceWire EGSE can be configured. With a connection to
the EGSE having previously been opened and the instrument script open, the “Run” toolbar button is
selected.

J L_::f: Eﬂ Al L a3 |.T§.) - "ga m
[J——— RUN
Run Toolbar Button

This configures the SpaceWire EGSE in such a way that it behaves as specified in the instrument script.
Once configured it operates independent of software resulting in real-time behavior.

Resulting SpaceWire Traffic

As soon as the SpaceWire EGSE is configured it operates as defined in the instrument script: the link
speed of SpaceWire interface two is set to 200Mbits/s and the EGSE starts in “mode0”. The following
screenshots were taken using a SpaceWire Link Analyser Mk2.

. Status Counters &J
q
‘Charaderlevents Per Second [~ | ;
End A EndB
Signaling Rate 100.000 MHz \ 200.000 MHz
Clear Pause ‘

200Mbits/s Link Speed

STAR-Dundee SD_TN_007

m SpaceWire EGSE: Simulating an Instrument

When a “model” RMAP write command is received on SpaceWire interface one, 64kByte packets of
random data are transmitted from interface two repeatedly at a data rate of 150Mbits/s.

Time From Trigger Time Delta EndA End A Delta End B End B Delta
Ons Header: BMAP Command
0ns Target Address: FE
200ns 200 ns Cs d: Write Command 200 ns
200ns Data Not Verified
200 ns |No‘r. Acknowledged
200ns |Non Incrementing Address
300 ns 100 ns Key: 20 100 ns
400ns 100 ns Initiator Address: FE 100 ns
500 ns 100 ns Transaction ID: 0000 100 ns
700ns 200 ns Extended Address: 00 200 ns
800 ns 100 ns \Address: 00000001 100 ns
1.200 ps 400 ns Data Length: 000004 400 ns
1.500 ps 300 ns Header CRC: AF 300 ns
1.500 ps Data CRC: 91
1.600 ps 100 ns 100 ns
2.040 ps 440 ns EOP 440 ns
2 690 ps 650 ns
2740 s 50 ns
4.37166 ms 4.36892 ms
437175 ms 90 ns
4.37184 ms 90 ns
8.74079 ms 4.36895 ms
8.740858 ms 90 ns
8.74097 ms 90 ns
8.74149 ms 520 ns
8.74201 ms 520 ns

64kByte Packets with Random Data Transmitted at 150Mbits/s

When a “mode2” RMAP write command is received on SpaceWire interface one, 1kByte packets
consisting of walking ones data are transmitted from interface two repeatedly at 50Mbits/s.

Time From Trigger Time Delta End A End A Delta | EndB | End B Delta
-1.59672 ms 90 ns
-1.59667 ms 50 ns Cargo Size:
Ons 1.59667 ms Header: EMAF Command EEP
0ns Target Address: FE
240 ns 240 ng Cs d: Write Command 240 ns
240 ns Data Not Verified
240 ns |Wot Acknowledged
240 ns |Wen Incrementing Address
340ns 100 ns Rey: 20 100 ns
440 ns 100 ns Initiator Address: FE 100 ns
540 ns 100 ns Transaction ID: 0001 100 ns
740 ns 200 ns Extended Address: 00 200 ns
880 ns 140 ns \Address: 00000001 140 ns
1.320 us 440 ns Data Length: 000004 440 ns
1.620 us 300 ns Header CRC: 83 300 ns
1.620 us Data CRC: E3
1720 ps 100 ns 100 ns
2200 ps 480 ns EOP 480 ns
3140 ps 940 ns
3.310ps 170 ns
207.910 ps 204.600 ps
208.120 ps 210ns
208.330 ps 210ns
209.930 ps 1.600 ps
211.530 ps 1.600 ps

When the “mode2” RMAP write command is received an immediate state transition occurs. This results in
an EEP being appended to the current packet in transmission from SpaceWire interface two and the
remaining packet cargo not being sent. Alternatively it is possible to specify transitions to occur once the
current schedule completes or once the current packet transmission completes.

When a “mode0” RMAP write command is received on SpaceWire interface one, the EGSE stops
transmitting data from interface two.

SD_TN_007 STAR-Dundee

Conclusion

This application note demonstrates how the SpaceWire EGSE and its associated scripting language could
be used to very quickly simulate a SpaceWire instrument. It has introduced some of the key concepts of
the EGSE scripting language (link speed configuration, pattern matching, events, variables, packet
definitions, scheduling and state machines), shown one way in which the EGSE can be operated (script
creation, compilation and EGSE configuration via the GUI application) and shown the performance
possible thanks to the EGSE’s ability to operate independent of software.

This example is relatively simple and only touches on the range of features both the EGSE hardware and
software provide. For more information please visit our website at www.star-dundee.com or contact us at
enguiries@star-dundee.com.

b L LB

STAR:Dundee:
":'7';—STAFH6LTS'§:, 166 Nethergate
- Pundee, DD1 4EE, Scotland, UK

| Tel:+44.1382 201 755 Fax: +44 1382 388 838

= Email: enquiries@star-dundee.com
~ Webrwww.star-dundee.com{] |

http://www.star-dundee.com/
mailto:enquiries@star-dundee.com

