STAR-Dundee and Microsemi Collaboration

Microsemi logo

STAR-Dundee is to collaborate with Microsemi to provide SpaceWire and SpaceFibre network technology using Microsemi’s RTG4 high-speed signal processing radiation-tolerant field programmable gate arrays (FPGAs).

“We are pleased to be working with Microsemi and leverage our unrivalled expertise to help the company expand the growing adoption of RTG4 FPGAs in SpaceWire and SpaceFibre applications,” said our CEO, Steve Parkes. “Our commitment is to ensure our customers can begin working with our technologies as quickly as possible, and utilizing Microsemi’s innovative RTG4 FPGAs can help the industry achieve this easily.”

STAR-Dundee is a Microsemi FPGA & SoC Partner, offering SpaceWire and SpaceFibre IP for Microsemi radiation tolerant FPGAs including the RTAX and RTG4 devices.

Further details are provided in Microsemi’s news release on the collaboration.

Information on the services that STAR-Dundee provides for Microsemi devices can be found on our STAR-Dundee Microsemi Partner page.  Also available on this page is a video featuring our CEO, demonstrating our SpaceWire and SpaceFibre IP on the RTG4.

Sentinel-3A

Iberian Peninsula

ESA’s Sentinel-3A was successfully launched on the 16th of February. On board it has four instruments: Ocean and Land Colour Instrument (OLCI), Sea and Land Surface Temperature Radiometer (SLSTR), Synthetic Aperture Radar Altimeter (SRAL) and Microwave Radiometer (MWR). Amongst other marine and Earth observation applications, these instruments will allow Sentinel-3A to map sea-level change and surface temperature, perform water quality management and monitor vegetation health. 

Three point-to-point SpaceWire links are used between the higher data rate OLCI, SLSTR and SRAL instruments and the Sentinel-3A payload data handling unit (PDHU). 

The image shown features Spain, Portugal and North Africa and is one of the first images taken by the OLCI instrument.  

For more information please see the ESA Sentinel-3 website. 

Image © Copernicus data (2016)

ExoMars Mission 2016

ExoMars 2016 fairing release image

The start of a new era of Mars exploration for Europe is planned to begin on the 14th of March 2016 with the launch of the ExoMars 2016 mission. The ExoMars 2016 mission consists of the Trace Gas Orbiter (TGO) and Schiaparelli, and is a joint venture between the European Space Agency (ESA) and Russia’s Roscosmos space agency. TGO will study the atmosphere of Mars. Schiaparelli will demonstrate a range of technologies for entry, decent and landing on Mars.

ESA has long used SpaceWire for payload data handling and the Trace Gas Orbitor is another example of this. The second ExoMars mission is planned for launch in 2018, and comprises a rover and a surface science platform. The rover will use SpaceWire extensively to interconnect various instruments, mass memory and processors.

For more information please see the ESA Robotic Exploration of Mars website.

Image © ESA/ATG medialab

Astro-H Launch

Astro-H Media Presentation Image

Astro-H was successfully launched on 17th February 2016. Astro-H (now known as Hitomi) is an X-ray astronomy satelite commissioned by the Japanese Aerospace Exploration Agency (JAXA) that extensively uses SpaceWire and the Remote Memory Access Protocol (RMAP). It was created to study the hot and energentic Universe, and will probe the sky in the X-ray and gamma-ray portions of the electromagnetic spectrum. For more information please see the JAXA Astro-H mission website.

Image © JAXA.